Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Applied Mathematics

Scroll Waves In The Presence Of Slowly Varying Anisotropy With Application To The Heart, S. Setayeshgar, Andrew J. Bernoff Dec 2001

Scroll Waves In The Presence Of Slowly Varying Anisotropy With Application To The Heart, S. Setayeshgar, Andrew J. Bernoff

All HMC Faculty Publications and Research

We consider the dynamics of scroll waves in the presence of rotating anisotropy, a model of the left ventricle of the heart in which the orientation of fibers in successive layers of tissue rotates. By choosing a coordinate system aligned with the fiber rotation and studying the phase dynamics of a straight but twisted scroll wave, we derive a Burgers’ equation with forcing associated with the fiber rotation rate. We present asymptotic solutions for scroll twist, verified by numerics, using a realistic fiber distribution profile. We make connection with earlier numerical and analytical work on scroll dynamics.


Modeling Control Of Hiv Infection Through Structured Treatment Interruptions With Recommendations For Experimental Protocol, Shannon Kubiak, Heather Lehr, Rachel Levy, Todd Moeller, Albert Parker, Edward Swim Nov 2001

Modeling Control Of Hiv Infection Through Structured Treatment Interruptions With Recommendations For Experimental Protocol, Shannon Kubiak, Heather Lehr, Rachel Levy, Todd Moeller, Albert Parker, Edward Swim

All HMC Faculty Publications and Research

Highly Active Anti-Retroviral Therapy (HAART) of HIV infection has significantly reduced morbidity and mortality in developed countries. However, since these treatments can cause side effects and require strict adherence to treatment protocol, questions about whether or not treatment can be interrupted or discontinued with control of infection maintained by the host immune system remain to be answered. We present sensitivity analysis of a compartmental model for HIV infection that allows for treatment interruptions, including the sensitivity of the compartments themselves to our parameters as well as the sensitivity of the cost function used in parameter estimation. Recommendations are made about …


Monotone Solutions Of A Nonautonomous Differential Equation For A Sedimenting Sphere, Andrew Belmonte, Jon T. Jacobsen, Anandhan Jayaraman Sep 2001

Monotone Solutions Of A Nonautonomous Differential Equation For A Sedimenting Sphere, Andrew Belmonte, Jon T. Jacobsen, Anandhan Jayaraman

All HMC Faculty Publications and Research

We study a class of integrodifferential equations and related ordinary differential equations for the initial value problem of a rigid sphere falling through an infinite fluid medium. We prove that for creeping Newtonian flow, the motion of the sphere is monotone in its approach to the steady state solution given by the Stokes drag. We discuss this property in terms of a general nonautonomous second order differential equation, focusing on a decaying nonautonomous term motivated by the sedimenting sphere problem