Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Applied Mathematics

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre Jan 2022

The Differentialgeometry Package, Ian M. Anderson, Charles G. Torre

Downloads

This is the entire DifferentialGeometry package, a zip file (DifferentialGeometry.zip) containing (1) a Maple Library file, DifferentialGeometryUSU.mla, (2) a Maple help file DifferentialGeometry.help, (3) a Maple Library file, DGApplicatons.mla. This is the latest version of the DifferentialGeometry software; it supersedes what is released with Maple.

Installation instructions


What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre Jan 2022

What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This Maple worksheet demonstrates the salient new features and functionalities of the 2022 release of the DifferentialGeometry software package.


Supplementary Files For "Creating A Universal Depth-To-Load Conversion Technique For The Conterminous United States Using Random Forests", Jesse Wheeler, Brennan Bean, Marc Maguire Aug 2021

Supplementary Files For "Creating A Universal Depth-To-Load Conversion Technique For The Conterminous United States Using Random Forests", Jesse Wheeler, Brennan Bean, Marc Maguire

Browse all Datasets

As part of an ongoing effort to update the ground snow load maps in the United States, this paper presents an investigation into snow densities for the purpose of predicting ground snow loads for structural engineering design with ASCE 7. Despite their importance, direct measurements of snow load are sparse when compared to measurements of snow depth. As a result, it is often necessary to estimate snow load using snow depth and other readily accessible climate variables. Existing depth-to-load conversion methods, each of varying complexity, are well suited for snow load estimation for a particular region or station network, but …


Spacetime Groups, Ian M. Anderson, Charles G. Torre Jan 2019

Spacetime Groups, Ian M. Anderson, Charles G. Torre

Publications

A spacetime group is a connected 4-dimensional Lie group G endowed with a left invariant Lorentz metric h and such that the connected component of the isometry group of h is G itself. The Newman-Penrose formalism is used to give an algebraic classification of spacetime groups, that is, we determine a complete list of inequivalent spacetime Lie algebras, which are pairs (g,η), with g being a 4-dimensional Lie algebra and η being a Lorentzian inner product on g. A full analysis of the equivalence problem for spacetime Lie algebras is given which leads to a completely algorithmic solution to the …


How To Make Tetrads, Charles G. Torre Jan 2018

How To Make Tetrads, Charles G. Torre

How to... in 10 minutes or less

This is a worksheet which demonstrates tools for creating orthonormal and null tetrads for a given spacetime.


Symmetric Criticality In General Relativity, Charles G. Torre Jan 2018

Symmetric Criticality In General Relativity, Charles G. Torre

Research Vignettes

In this worksheet I explore the local Lagrangian version of the Principle of Symmetric Criticality (PSC) due to Anderson, Fels, and Torre], which asserts the commutativity of the processes (i) of symmetry reduction (for finding group-invariant fields) and (ii) forming Euler-Lagrange equations. There are two obstructions to PSC, which I will call the Lie algebra obstruction and the isotropy obstruction. In this worksheet I will illustrate these obstructions in the General Theory of Relativity.


Examples Of The Birkhoff Theorem And Its Generalizations, Charles G. Torre Jan 2018

Examples Of The Birkhoff Theorem And Its Generalizations, Charles G. Torre

Tutorials on... in 1 hour or less

In this worksheet I demonstrate three versions of Birkhoff's theorem, which is a characterization of spherically symmetric solutions of the Einstein equations. The three versions considered here correspond to taking the "Einstein equations" to be: (1) the vacuum Einstein equations; (2) the Einstein equations with a cosmological constant (3) the Einstein-Maxwell equations. I will restrict my attention to 4-dimensional spacetimes.


Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre Dec 2017

Introduction To The Usu Library Of Solutions To The Einstein Field Equations, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This is a Maple worksheet providing an introduction to the USU Library of Solutions to the Einstein Field Equations. The library is part of the DifferentialGeometry software project and is a collection of symbolic data and metadata describing solutions to the Einstein equations.


The Kretschmann Scalar, Charles G. Torre Jan 2016

The Kretschmann Scalar, Charles G. Torre

How to... in 10 minutes or less

On a pseudo-Riemannian manifold with metric g, the "Kretschmann scalar" is a quadratic scalar invariant of the Riemann R tensor of g, defined by contracting all indices with g. In this worksheet we show how to calculate the Kretschmann scalar from a metric.


A Rank 7 Pfaffian System On A 15-Dimensional Manifold With F4 Symmetry Algebra, Ian M. Anderson Jan 2015

A Rank 7 Pfaffian System On A 15-Dimensional Manifold With F4 Symmetry Algebra, Ian M. Anderson

Tutorials on... in 1 hour or less

Let I be a differential system on a manifold M. The infinitesimal symmetry algebra of I is the set of all vectors fields X on M such that preserve I. In this worksheet we present an example, due to E. Cartan of a rank 7 Pfaffian system on a 15-dimensional manifold whose infinitesimal symmetry algebra is the split real form of the exceptional Lie algebra f4 .


Rainich-Type Conditions For Perfect Fluid Spacetimes, Dionisios Krongos, Charles G. Torre Dec 2014

Rainich-Type Conditions For Perfect Fluid Spacetimes, Dionisios Krongos, Charles G. Torre

Research Vignettes

In this worksheet we describe and illustrate a relatively simple set of new Rainich-type conditions on an n-dimensional spacetime which are necessary and sufficient for it to define a perfect fluid solution of the Einstein field equations. Procedures are provided which implement these Rainich-type conditions and which reconstruct the perfect fluid from the metric. These results provide an example of the idea of geometrization of matter fields in general relativity, which is a purely geometrical characterization of matter fields via the Einstein field equations.


How To Find Killing Vectors, Charles G. Torre Mar 2013

How To Find Killing Vectors, Charles G. Torre

How to... in 10 minutes or less

We show how to compute the Lie algebra of Killing vector fields of a metric in Maple using the commands KillingVectors and LieAlgebraData. A Maple worksheet and a PDF version can be found below.


How To Create A Two-Component Spinor, Charles G. Torre Oct 2012

How To Create A Two-Component Spinor, Charles G. Torre

How to... in 10 minutes or less

Let (M, g) be a spacetime, i.e., a 4-dimensional manifold M and Lorentz signature metric g. The key ingredients needed for constructing spinor fields on the spacetime are: a complex vector bundle E -> M ; an orthonormal frame on TM ; and a solder form relating sections of E to sections of TM (and tensor products thereof). We show how to create a two-component spinor field on the Schwarzschild spacetime using the DifferentialGeometry package in Maple. PDF and Maple worksheets can be downloaded from the links below.


The Octonions And The Exceptional Lie Algebra G2, Ian M. Anderson Sep 2012

The Octonions And The Exceptional Lie Algebra G2, Ian M. Anderson

Research Vignettes

The octonions O are an 8-dimensional non-commutative, non-associative normed real algebra. The set of all derivations of O form a real Lie algebra. It is remarkable fact, first proved by E. Cartan in 1908, that the the derivation algebra of O is the compact form of the exceptional Lie algebra G2. In this worksheet we shall verify this result of Cartan and also show that the derivation algebra of the split octonions is the split real form of G2.

PDF and Maple worksheets can be downloaded from the links below.


Higher Order Symmetries Of The Kdv Equation, Ian M. Anderson Aug 2012

Higher Order Symmetries Of The Kdv Equation, Ian M. Anderson

Research Vignettes

In this worksheet we symbolically construct the formal inverse of the total derivative operator and use it to construct the recursion operator for the higher-order symmetries of the KdV equation. Using this recursion operator we generate the first 5 generalized symmetries of the KdV equation and verify that they all commute.

PDF and Maple worksheets can be downloaded from the links below.