Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Applied Mathematics

Several Problems In Nonlinear Schrödinger Equations, Tim Van Hoose Jan 2022

Several Problems In Nonlinear Schrödinger Equations, Tim Van Hoose

Masters Theses

“We study several different problems related to nonlinear Schrödinger equations….

We prove several new results for the first equation: a modified scattering result for both an averaged version of the equation and the full equation, as well as a set of Strichartz estimates and a blowup result for the 3d cubic problem.

We also present an exposition of the classical work of Bourgain on invariant measures for the second equation in the mass-subcritical regime”--Abstract, page iv.


Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole Oct 2018

Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole

Masters Theses

This thesis presents the development towards a system that can capture and quantify motion for applications in biomechanical and medical fields demanding precision motion tracking using the lighthouse technology. Commercially known as SteamVR tracking, the lighthouse technology is a motion tracking system developed for virtual reality applications that makes use of patterned infrared light sources to highlight trackers (objects embedded with photodiodes) to obtain their pose or spatial position and orientation. Current motion capture systems such as the camera-based motion capture are expensive and not readily available outside of research labs. This thesis provides a case for low-cost motion capture …


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


Transverse Waves In Simulated Liquid Rocket Engines With Arbitrary Headwall Injection, Charles Toufic Haddad Dec 2011

Transverse Waves In Simulated Liquid Rocket Engines With Arbitrary Headwall Injection, Charles Toufic Haddad

Masters Theses

This work introduces a closed-form analytical solution for the transverse vorticoacoustic wave in a circular cylinder with arbitrary headwall injection. This particular configuration mimics the conditions leading to the onset of traveling radial and tangential waves in a simple liquid rocket engine (LRE). Assuming a short cylindrical chamber with an injecting headwall, regular perturbations are used to linearize the problem’s mass, momentum, energy, ideal gas and isentropic relations. A Helmholtz decomposition is subsequently applied to the first-order disturbance equations, thus giving rise to a compressible, inviscid and acoustic set that is responsible for driving the unsteady motion and to an …


Analytical Computation Of Proper Orthogonal Decomposition Modes And N-Width Approximations For The Heat Equation With Boundary Control, Tasha N. Fernandez Dec 2010

Analytical Computation Of Proper Orthogonal Decomposition Modes And N-Width Approximations For The Heat Equation With Boundary Control, Tasha N. Fernandez

Masters Theses

Model reduction is a powerful and ubiquitous tool used to reduce the complexity of a dynamical system while preserving the input-output behavior. It has been applied throughout many different disciplines, including controls, fluid and structural dynamics. Model reduction via proper orthogonal decomposition (POD) is utilized for of control of partial differential equations. In this thesis, the analytical expressions of POD modes are derived for the heat equation. The autocorrelation function of the latter is viewed as the kernel of a self adjoint compact operator, and the POD modes and corresponding eigenvalues are computed by solving homogeneous integral equations of the …


Nonlinear Acoustics Of Piston-Driven Gas-Column Oscillations, Andrew William Wilson Aug 2010

Nonlinear Acoustics Of Piston-Driven Gas-Column Oscillations, Andrew William Wilson

Masters Theses

The piston-driven oscillator is traditionally modeled by directly applying boundary conditions to the acoustic wave equations; with better models re-deriving the wave equations but retaining nonlinear and viscous effects. These better models are required as the acoustic solution exhibits singularity near the natural frequencies of the cavity, with an unbounded (and therefore unphysical) solution. Recently, a technique has been developed to model general pressure oscillations in propulsion systems and combustion devices. Here, it is shown that this technique applies equally well to the piston-driven gas-column oscillator; and that the piston experiment provides strong evidence for the validity of the general …