Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Applied Mathematics

Generation, Dynamics, And Interaction Of Quartic Solitary Waves In Nonlinear Laser Systems, Sabrina Hetzel Apr 2024

Generation, Dynamics, And Interaction Of Quartic Solitary Waves In Nonlinear Laser Systems, Sabrina Hetzel

Mathematics Theses and Dissertations

Solitons are self-reinforcing localized wave packets that have remarkable stability features that arise from the balanced competition of nonlinear and dispersive effects in the medium. Traditionally, the dominant order of dispersion has been the lowest (second), however in recent years, experimental and theoretical research has shown that high, even order dispersion may lead to novel applications. Here, the focus is on investigating the interplay of dominant quartic (fourth-order) dispersion and the self-phase modulation due to the nonlinear Kerr effect in laser systems. One big factor to consider for experimentalists working in laser systems is the effect of noise on the …


Predicting Biomolecular Properties And Interactions Using Numerical, Statistical And Machine Learning Methods, Elyssa Sliheet Apr 2024

Predicting Biomolecular Properties And Interactions Using Numerical, Statistical And Machine Learning Methods, Elyssa Sliheet

Mathematics Theses and Dissertations

We investigate machine learning and electrostatic methods to predict biophysical properties of proteins, such as solvation energy and protein ligand binding affinity, for the purpose of drug discovery/development. We focus on the Poisson-Boltzmann model and various high performance computing considerations such as parallelization schemes.


Practical Implementation Of The Immersed Interface Method With Triangular Meshes For 3d Rigid Solids In A Fluid Flow, Norah Hakami Apr 2023

Practical Implementation Of The Immersed Interface Method With Triangular Meshes For 3d Rigid Solids In A Fluid Flow, Norah Hakami

Mathematics Theses and Dissertations

When employing the immersed interface method (IIM) to simulate a fluid flow around a moving rigid object, the immersed object can be replaced by a virtual fluid enclosed by singular forces on the interface between the real and virtual fluids. These forces represent the impact of the rigid motion on the fluid flow and cause jump discontinuities across the interface in the whole flow field. Then, the IIM resolves the fluid flow on a fixed computational domain by directly incorporating the jump conditions across the interface into numerical schemes. Previous development of the method is limited to simple smooth boundaries. …


Modeling Fluid Phenomena In The Context Of The Constrained Vapor Bubble System, James Barrett Dec 2020

Modeling Fluid Phenomena In The Context Of The Constrained Vapor Bubble System, James Barrett

Mathematics Theses and Dissertations

This thesis focuses on the fluid phenomena observed within what is known as the constrained vapor bubble system. The constrained vapor bubble system is a closed system consisting of a quartz cuvette partially filled with liquid and used as a coolant device. Heat is applied to the heater end which causes the liquid to evaporate and condense on the cooled end of the cuvette. Liquid travels back to the heated end via capillary flow in the corners. A pure vapor bubble is formed in the center of the cuvette giving rise to the name of the experiment. The constrained vapor …


Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan Jul 2019

Investigation Of Fundamental Principles Of Rigid Body Impact Mechanics, Khalid Alluhydan

Mechanical Engineering Research Theses and Dissertations

In impact mechanics, the collision between two or more bodies is a common, yet a very challenging problem. Producing analytical solutions that can predict the post-collision motion of the colliding bodies require consistent modeling of the dynamics of the colliding bodies. This dissertation presents a new method for solving the two and multibody impact problems that can be used to predict the post-collision motion of the colliding bodies. Also, we solve the rigid body collision problem of planar kinematic chains with multiple contacts with external surfaces.

In the first part of this dissertation, we study planar collisions of Balls and …


Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson Apr 2018

Swelling As A Stabilizing Mechanism During Ion Bombardment Of Thin Films: An Analytical And Numerical Study, Jennifer M. Swenson

Mathematics Theses and Dissertations

Irradiation of semiconductor surfaces often leads to the spontaneous formation of rippled structures at certain irradiation angles. However, at high enough energies, these structures are observed to vanish for all angles, despite the absence of any identified, universally-stabilizing physical mechanisms in operation. Here, we examine the effect on pattern formation of radiation-induced swelling, which has been excluded from prior treatments of stress in irradiated films. After developing a suitable continuum model, we perform a linear stability analysis to determine its effect on stability. Under appropriate simplifying assumptions, we find swelling indeed to be stabilizing at wavenumbers typical of experimental observations. …