Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Applied Mathematics

Hepatitis B And D: A Forecast On Actions Needed To Reduce Incidence And Achieve Elimination, Scott Greenhalgh, Andrew Klug May 2022

Hepatitis B And D: A Forecast On Actions Needed To Reduce Incidence And Achieve Elimination, Scott Greenhalgh, Andrew Klug

Spora: A Journal of Biomathematics

Viral hepatitis negatively affects the health of millions, with the worst health outcomes associated with the hepatitis D virus (HDV). Fortunately, HDV is rare and requires prior infection with the hepatitis B virus (HBV) before it can establish infection and transmit. Here, we develop a mathematical model of HBV and HDV transmission in Sub-Saharan Africa to investigate the effects of hepatitis B vaccination on both HBV and HDV. Our findings illustrate a hepatitis B vaccination rate above 0.006 year-1 reduces hepatitis D by over 90%, and a vaccination rate above 0.0221 year-1 reduces hepatitis B by over 90%, …


Stability Analysis For The Equilibria Of A Monkeypox Model, Rachel Elizabeth Tewinkel May 2019

Stability Analysis For The Equilibria Of A Monkeypox Model, Rachel Elizabeth Tewinkel

Theses and Dissertations

Monkeypox virus was first identified in 1958 and has since been an ongoing problem in Central and Western Africa. Although the smallpox vaccine provides partial immunity against monkeypox, the number of cases has greatly increased since the eradication of smallpox made its vaccination unnecessary. Although studied by epidemiologists, monkeypox has not been thoroughly studied by mathematicians to the extent of other serious diseases. Currently, to our knowledge, only three mathematical models of monkeypox have been proposed and studied. We present the first of these models, which is related to the second, and discuss the global and local asymptotic stability of …


Optimal Therapy Regimens For Treatment-Resistant Mutations Of Hiv, Weiqing Gu, Helen Moore Jan 2006

Optimal Therapy Regimens For Treatment-Resistant Mutations Of Hiv, Weiqing Gu, Helen Moore

All HMC Faculty Publications and Research

In this paper, we use control theory to determine optimal treatment regimens for HIV patients, taking into account treatment-resistant mutations of the virus. We perform optimal control analysis on a model developed previously for the dynamics of HIV with strains of various resistance to treatment (Moore and Gu, 2005). This model incorporates three types of resistance to treatments: strains that are not responsive to protease inhibitors, strains not responsive to reverse transcriptase inhibitors, and strains not responsive to either of these treatments. We solve for the optimal treatment regimens analytically and numerically. We find parameter regimes for which optimal dosing …


A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu Apr 2005

A Mathematical Model For Treatment-Resistant Mutations Of Hiv, Helen Moore, Weiqing Gu

All HMC Faculty Publications and Research

In this paper, we propose and analyze a mathematical model, in the form of a system of ordinary differential equations, governing mutated strains of human immunodeficiency virus (HIV) and their interactions with the immune system and treatments. Our model incorporates two types of resistant mutations: strains that are not responsive to protease inhibitors, and strains that are not responsive to reverse transcriptase inhibitors. It also includes strains that do not have either of these two types of resistance (wild-type virus) and strains that have both types. We perform our analysis by changing the system of ordinary differential equations (ODEs) to …


Mathematical Models Of Chemotherapy, John Carl Panetta Apr 1995

Mathematical Models Of Chemotherapy, John Carl Panetta

Mathematics & Statistics Theses & Dissertations

Several mathematical models are developed to describe the effects of chemotherapy on both cancerous and normal tissue. Each model is defined by either a single homogeneous equation or a system of heterogeneous equations which describe the states of the normal and/or cancer cells. Periodic terms are added to model the effects of the chemotherapy. What we obtain are regions, in parameter space (dose and period), of acceptable drug regimens.

The models take into account various aspects of chemotherapy. These include, interactions between the cancer and normal tissue, cell specific chemotherapeutic drug, the use of non-constant parameters to aid in modeling …