Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Applied Mathematics

An Exposition Of The Curvature Of Warped Product Manifolds, Angelina Bisson Dec 2023

An Exposition Of The Curvature Of Warped Product Manifolds, Angelina Bisson

Electronic Theses, Projects, and Dissertations

The field of differential geometry is brimming with compelling objects, among which are warped products. These objects hold a prominent place in differential geometry and have been widely studied, as is evident in the literature. Warped products are topologically the same as the Cartesian product of two manifolds, but with distances in one of the factors in skewed. Our goal is to introduce warped product manifolds and to compute their curvature at any point. We follow recent literature and present a previously known result that classifies all flat warped products to find that there are flat examples of warped products …


What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre Jan 2022

What's New In Differentialgeometry Release Dg2022, Ian M. Anderson, Charles G. Torre

Tutorials on... in 1 hour or less

This Maple worksheet demonstrates the salient new features and functionalities of the 2022 release of the DifferentialGeometry software package.


The Kepler Problem On Complex And Pseudo-Riemannian Manifolds, Michael R. Astwood Jan 2022

The Kepler Problem On Complex And Pseudo-Riemannian Manifolds, Michael R. Astwood

Theses and Dissertations (Comprehensive)

The motion of objects in the sky has captured the attention of scientists and mathematicians since classical times. The problem of determining their motion has been dubbed the Kepler problem, and has since been generalized into an abstract problem of dynamical systems. In particular, the question of whether a classical system produces closed and bounded orbits is of importance even to modern mathematical physics, since these systems can often be analysed by hand. The aforementioned question was originally studied by Bertrand in the context of celestial mechanics, and is therefore referred to as the Bertrand problem. We investigate the qualitative …


How To Make Tetrads, Charles G. Torre Jan 2018

How To Make Tetrads, Charles G. Torre

How to... in 10 minutes or less

This is a worksheet which demonstrates tools for creating orthonormal and null tetrads for a given spacetime.


Non-Compact Solutions To Inverse Mean Curvature Flow In Hyperbolic Space, Brian Daniel Allen May 2016

Non-Compact Solutions To Inverse Mean Curvature Flow In Hyperbolic Space, Brian Daniel Allen

Doctoral Dissertations

We investigate Inverse Mean Curvature Flow (IMCF) of non-compact hypersurfaces in hyperbolic space. Specifically, we look at bounded graphs over horospheres in Hyperbolic space and show long time existence of the flow as well as asymptotic convergence to horospheres. Along the way many important local estimates as well as global estimates are obtained. In addition, we develop a useful family of cutoff functions for IMCF as well as a non-compact ODE maximum principle at infinity which are integral tools used throughout the document.


How To Find Killing Vectors, Charles G. Torre Mar 2013

How To Find Killing Vectors, Charles G. Torre

How to... in 10 minutes or less

We show how to compute the Lie algebra of Killing vector fields of a metric in Maple using the commands KillingVectors and LieAlgebraData. A Maple worksheet and a PDF version can be found below.