Open Access. Powered by Scholars. Published by Universities.®

Applied Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Dynamic Systems

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 128

Full-Text Articles in Applied Mathematics

Year-2 Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Steven M. Wise, Evan Habbershaw Jan 2024

Year-2 Progress Report On Numerical Methods For Bgk-Type Kinetic Equations, Steven M. Wise, Evan Habbershaw

Faculty Publications and Other Works -- Mathematics

In this second progress report we expand upon our previous report and preliminary work. Specifically, we review some work on the numerical solution of single- and multi-species BGK-type kinetic equations of particle transport. Such equations model the motion of fluid particles via a density field when the kinetic theory of rarefied gases must be used in place of the continuum limit Navier-Stokes and Euler equations. The BGK-type equations describe the fluid in terms of phase space variables, and, in three space dimensions, require 6 independent phase-space variables (3 for space and 3 for velocity) for each species for accurate simulation. …


Convolutional Neural Network-Based Gene Prediction Using Buffalograss As A Model System, Michael Morikone Nov 2023

Convolutional Neural Network-Based Gene Prediction Using Buffalograss As A Model System, Michael Morikone

Complex Biosystems PhD Program: Dissertations

The task of gene prediction has been largely stagnant in algorithmic improvements compared to when algorithms were first developed for predicting genes thirty years ago. Rather than iteratively improving the underlying algorithms in gene prediction tools by utilizing better performing models, most current approaches update existing tools through incorporating increasing amounts of extrinsic data to improve gene prediction performance. The traditional method of predicting genes is done using Hidden Markov Models (HMMs). These HMMs are constrained by having strict assumptions made about the independence of genes that do not always hold true. To address this, a Convolutional Neural Network (CNN) …


The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam Sep 2023

The Role Of Nanofluids In Renewable Energy Engineering, M. M. Bhatti, K. Vafai, Sara I. Abdelsalam

Basic Science Engineering

No abstract provided.


Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis, Sara I. Abdelsalam, A. M. Alsharif, Y. Abd Elmaboud, A. I. Abdellateef May 2023

Assorted Kerosene-Based Nanofluid Across A Dual-Zone Vertical Annulus With Electroosmosis, Sara I. Abdelsalam, A. M. Alsharif, Y. Abd Elmaboud, A. I. Abdellateef

Basic Science Engineering

The goal of this numerical simulation is to visualize the electroosmotic flow of immiscible fluids through a porous medium in vertical annular microtubes. The inner region (Region I) is filled with an electrically conducting hybrid nanofluid while an electrically conducting Jeffrey fluid is flowing in the second region (Region II). The chosen nanofluid is kerosene-based and the nanoparticles (Fe3O4-TiO2) are of a spherical shape. A strong zeta potential is taken into account and the electroosmotic velocity in the two layers is considered too. The annular microtubes are subjected to an external magnetic field and an electric field. The linked nonlinear …


Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li Jan 2023

Dynamic Function Learning Through Control Of Ensemble Systems, Wei Zhang, Vignesh Narayanan, Jr-Shin Li

Publications

Learning tasks involving function approximation are preva- lent in numerous domains of science and engineering. The underlying idea is to design a learning algorithm that gener- ates a sequence of functions converging to the desired target function with arbitrary accuracy by using the available data samples. In this paper, we present a novel interpretation of iterative function learning through the lens of ensemble dy- namical systems, with an emphasis on establishing the equiv- alence between convergence of function learning algorithms and asymptotic behavior of ensemble systems. In particular, given a set of observation data in a function learning task, we …


Entropy Analysis Of Sutterby Nanofluid Flow Over A Riga Sheet With Gyrotactic Microorganisms And Cattaneo–Christov Double Diffusion, M. Faizan, F. Ali, K. Loganathan, A. Zaib, C. A. Reddy, Sara I. Abdelsalam Sep 2022

Entropy Analysis Of Sutterby Nanofluid Flow Over A Riga Sheet With Gyrotactic Microorganisms And Cattaneo–Christov Double Diffusion, M. Faizan, F. Ali, K. Loganathan, A. Zaib, C. A. Reddy, Sara I. Abdelsalam

Basic Science Engineering

In this article, a Riga plate is exhibited with an electric magnetization actuator consisting of permanent magnets and electrodes assembled alternatively. This exhibition produces electromagnetic hydrodynamic phenomena over a fluid flow. A new study model is formed with the Sutterby nanofluid flow through the Riga plate, which is crucial to the structure of several industrial and entering advancements, including thermal nuclear reactors, flow metres and nuclear reactor design. This article addresses the entropy analysis of Sutterby nanofluid flow over the Riga plate. The Cattaneo–Christov heat and mass flux were used to examine the behaviour of heat and mass relaxation time. …


Electroencephalogram Classification Of Brain States Using Deep Learning Approach, Hrishitva Patel Jan 2022

Electroencephalogram Classification Of Brain States Using Deep Learning Approach, Hrishitva Patel

Computer Science Faculty Scholarship

The oldest diagnostic method in the field of neurology is electroencephalography (EEG). To grasp the information contained in EEG signals, numerous deep machine learning architectures have been developed recently. In brain computer interface (BCI) systems, classification is crucial. Many recent studies have effectively employed deep learning algorithms to learn features and classify various sorts of data. A systematic review of EEG classification using deep learning was conducted in this research, resulting in 90 studies being discovered from the Web of Science and PubMed databases. Researchers looked at a variety of factors in these studies, including the task type, EEG pre-processing …


On Behavioral Response Of Ciliated Cervical Canal On The Development Of Electroosmotic Forces In Spermatic Fluid, Sara I. Abdelsalam, A. Z. Zaher Jan 2022

On Behavioral Response Of Ciliated Cervical Canal On The Development Of Electroosmotic Forces In Spermatic Fluid, Sara I. Abdelsalam, A. Z. Zaher

Basic Science Engineering

The goal of this research is to conduct a theoretical investigation about the effect of the electroosmotic forces on the swimming of sperms throughout the cervical canal. To imitate male semen with self-propulsive spermatozoa, a hyperbolic tangent fluid is used as the base liquid. Swimming sperms move inside a ciliated cervical canal and peristalsis occurs due to the ciliated walls. The perturbation method is used to solve the controlling partial differential set of equations analytically. Due to selfpropulsion of swimmers and long wavelength assumption, a creeping flow protocol is used throughout the stream. The stream pattern, velocity distribution, and pressure …


Computational Framework Of Magnetized Mgo–Ni/Water-Based Stagnation Nanoflflow Past An Elastic Stretching Surface: Application In Solar Energy Coatings, M. M. Bhatti, O. A. Bég, Sara I. Abdelsalam Jan 2022

Computational Framework Of Magnetized Mgo–Ni/Water-Based Stagnation Nanoflflow Past An Elastic Stretching Surface: Application In Solar Energy Coatings, M. M. Bhatti, O. A. Bég, Sara I. Abdelsalam

Basic Science Engineering

In this article, motivated by novel nanofluid solar energy coating systems, a mathematical model of hybrid magnesium oxide (MgO) and nickel (Ni) nanofluid magnetohydrodynamic (MHD) stagnation point flow impinging on a porous elastic stretching surface in a porous medium is developed. The hybrid nanofluid is electrically conducted, and a magnetic Reynolds number is sufficiently large enough to invoke an induced magnetic field. A Darcy model is adopted for the isotropic, homogenous porous medium. The boundary conditions account for the impacts of the velocity slip and thermal slip. Heat generation (source)/absorption (sink) and also viscous dissipation effects are included. The mathematical …


Scientific Breakdown Of A Ferromagnetic Nanofluid In Hemodynamics: Enhanced Therapeutic Approach, M. M. Bhatti, Sara Abdelsalam Jan 2022

Scientific Breakdown Of A Ferromagnetic Nanofluid In Hemodynamics: Enhanced Therapeutic Approach, M. M. Bhatti, Sara Abdelsalam

Basic Science Engineering

In this article, we examine the mechanism of cobalt and tantalum nanoparticles through a hybrid fluid model. The nanofluid is propagating through an anisotropically tapered artery with three different configurations; converging, diverging and non-tapered. To examine the rheology of the blood we have incorporated a Williamson fluid model which reveals both Newtonian and non-Newtonian effects. Mathematical and physical formulations are derived using the Lubrication approach for continuity, momentum and energy equations. The impact of magnetic field, porosity and viscous dissipation are also taken into the proposed formulation. A perturbation approach is used to determine the solutions of the formulated nonlinear …


Contributions To The Teaching And Learning Of Fluid Mechanics, Ashwin Vaidya Jul 2021

Contributions To The Teaching And Learning Of Fluid Mechanics, Ashwin Vaidya

Department of Mathematics Facuty Scholarship and Creative Works

This issue showcases a compilation of papers on fluid mechanics (FM) education, covering different sub topics of the subject. The success of the first volume [1] prompted us to consider another follow-up special issue on the topic, which has also been very successful in garnering an impressive variety of submissions. As a classical branch of science, the beauty and complexity of fluid dynamics cannot be overemphasized. This is an extremely well-studied subject which has now become a significant component of several major scientific disciplines ranging from aerospace engineering, astrophysics, atmospheric science (including climate modeling), biological and biomedical science …


Lecture 07: Nonlinear Preconditioning Methods And Applications, Xiao-Chuan Cai Apr 2021

Lecture 07: Nonlinear Preconditioning Methods And Applications, Xiao-Chuan Cai

Mathematical Sciences Spring Lecture Series

We consider solving system of nonlinear algebraic equations arising from the discretization of partial differential equations. Inexact Newton is a popular technique for such problems. When the nonlinearities in the system are well-balanced, Newton's method works well, but when a small number of nonlinear functions in the system are much more nonlinear than the others, Newton may converge slowly or even stagnate. In such a situation, we introduce some nonlinear preconditioners to balance the nonlinearities in the system. The preconditioners are often constructed using a combination of some domain decomposition methods and nonlinear elimination methods. For the nonlinearly preconditioned problem, …


The Fundamental Limit Theorem Of Countable Markov Chains, Nathanael Gentry Apr 2021

The Fundamental Limit Theorem Of Countable Markov Chains, Nathanael Gentry

Senior Honors Theses

In 1906, the Russian probabilist A.A. Markov proved that the independence of a sequence of random variables is not a necessary condition for a law of large numbers to exist on that sequence. Markov's sequences -- today known as Markov chains -- touch several deep results in dynamical systems theory and have found wide application in bibliometrics, linguistics, artificial intelligence, and statistical mechanics. After developing the appropriate background, we prove a modern formulation of the law of large numbers (fundamental theorem) for simple countable Markov chains and develop an elementary notion of ergodicity. Then, we apply these chain convergence results …


Thermodynamic Entropy Of A Magnetized Ree-Eyring Particle-Fluid Motion With Irreversibility Process: A Mathematical Paradigm, M. M. Bhatti, Sara I. Abdelsalam Jan 2021

Thermodynamic Entropy Of A Magnetized Ree-Eyring Particle-Fluid Motion With Irreversibility Process: A Mathematical Paradigm, M. M. Bhatti, Sara I. Abdelsalam

Basic Science Engineering

This article deals with the entropy generation and irreversibility process under the effects of partial slip on magnetic dusty liquid induced by peristaltic wave through a porous channel. The Ree-Eyring fluid model has been used for a governing flow. Mathematical modelling is based on Ohm's law, continuity equation, Darcy law and momentum equation. Analytical solutions are presented for fluid and particle phase. The effects of different pertinent parameters are considered for Newtonian and non-Newtonian cases. Numerical integration has been carried out using a computational software to analyse the pumping characteristics. The behaviour of velocity profile, trapping mechanism, entropy generation, Bejan …


Leveraging Elasticity To Uncover The Role Of Rabinowitsch Suspension Through A Wavelike Conduit: Consolidated Blood Suspension Application, Sara I. Abdelsalam, A. Z. Zaher Jan 2021

Leveraging Elasticity To Uncover The Role Of Rabinowitsch Suspension Through A Wavelike Conduit: Consolidated Blood Suspension Application, Sara I. Abdelsalam, A. Z. Zaher

Basic Science Engineering

The present work presents a mathematical investigation of a Rabinowitsch suspension fluid through elastic walls with heat transfer under the effect of electroosmotic forces (EOFs). The governing equations contain empirical stress-strain equations of the Rabinowitsch fluid model and equations of fluid motion along with heat transfer. It is of interest in this work to study the effects of EOFs, which are rigid spherical particles that are suspended in the Rabinowitsch fluid, the Grashof parameter, heat source, and elasticity on the shear stress of the Rabinowitsch fluid model and flow quantities. The solutions are achieved by taking long wavelength approximation with …


Numerical Computations Of Vortex Formation Length In Flow Past An Elliptical Cylinder, Matthew Karlson, Bogdan Nita, Ashwin Vaidya Sep 2020

Numerical Computations Of Vortex Formation Length In Flow Past An Elliptical Cylinder, Matthew Karlson, Bogdan Nita, Ashwin Vaidya

Department of Mathematics Facuty Scholarship and Creative Works

We examine two dimensional properties of vortex shedding past elliptical cylinders through numerical simulations. Specifically, we investigate the vortex formation length in the Reynolds number regime 10 to 100 for elliptical bodies of aspect ratio in the range 0.4 to 1.4. Our computations reveal that in the steady flow regime, the change in the vortex length follows a linear profile with respect to the Reynolds number, while in the unsteady regime, the time averaged vortex length decreases in an exponential manner with increasing Reynolds number. The transition in profile is used to identify the critical Reynolds number which marks the …


Teaching And Learning Of Fluid Mechanics, Ashwin Vaidya Apr 2020

Teaching And Learning Of Fluid Mechanics, Ashwin Vaidya

Department of Mathematics Facuty Scholarship and Creative Works

Fluid mechanics occupies a privileged position in the sciences; it is taught in various science departments including physics, mathematics, environmental sciences and mechanical, chemical and civil engineering, with each highlighting a different aspect or interpretation of the foundation and applications of fluids. Doll’s fluid analogy [5] for this idea is especially relevant to this issue: “Emergence of creativity from complex flow of knowledge—example of Benard convection pattern as an analogy—dissipation or dispersal of knowledge (complex knowledge) results in emergent structures, i.e., creativity which in the context of education should be thought of as a unique way to arrange information so …


Mitigating Safety Concerns And Profit/Production Losses For Chemical Process Control Systems Under Cyberattacks Via Design/Control Methods, Helen Durand, Matthew Wegener Apr 2020

Mitigating Safety Concerns And Profit/Production Losses For Chemical Process Control Systems Under Cyberattacks Via Design/Control Methods, Helen Durand, Matthew Wegener

Chemical Engineering and Materials Science Faculty Research Publications

One of the challenges for chemical processes today, from a safety and profit standpoint, is the potential that cyberattacks could be performed on components of process control systems. Safety issues could be catastrophic; however, because the nonlinear systems definition of a cyberattack has similarities to a nonlinear systems definition of faults, many processes have already been instrumented to handle various problematic input conditions. Also challenging is the question of how to design a system that is resilient to attacks attempting to impact the production volumes or profits of a company. In this work, we explore a process/equipment design framework for …


Modeling Predator-Prey Interaction In A Two Patch System, Marc Wade Apr 2020

Modeling Predator-Prey Interaction In A Two Patch System, Marc Wade

UCARE Research Products

In this study we examine predator-prey relationships in the context of a two patch system. What is meant by a two patch system is that prey live in a habitat that consists of type 1 patches with an abundance of food and type 2 patches with no food. In our study, we will be assuming that predators cannot enter the first type of patch. We combine three well-established ecological theories: migration theory, optimal foraging theory, and the standard predator-prey model in order to answer the motivating question: "Under what environmental conditions is a predator population stable when predation can only …


Responsive Economic Model Predictive Control For Next-Generation Manufacturing, Helen Durand Feb 2020

Responsive Economic Model Predictive Control For Next-Generation Manufacturing, Helen Durand

Chemical Engineering and Materials Science Faculty Research Publications

There is an increasing push to make automated systems capable of carrying out tasks which humans perform, such as driving, speech recognition, and anomaly detection. Automated systems, therefore, are increasingly required to respond to unexpected conditions. Two types of unexpected conditions of relevance in the chemical process industries are anomalous conditions and the responses of operators and engineers to controller behavior. Enhancing responsiveness of an advanced control design known as economic model predictive control (EMPC) (which uses predictions of future process behavior to determine an economically optimal manner in which to operate a process) to unexpected conditions of these types …


Swimming Of Motile Gyrotactic Microorganisms And Nanoparticles In Blood Flow Through Anisotropically Tapered Arteries, M. M. Bhatti, M. Marin, A. Zeeshan, R. Ellahi, Sara I. Abdelsalam Jan 2020

Swimming Of Motile Gyrotactic Microorganisms And Nanoparticles In Blood Flow Through Anisotropically Tapered Arteries, M. M. Bhatti, M. Marin, A. Zeeshan, R. Ellahi, Sara I. Abdelsalam

Basic Science Engineering

In the present article, we have presented a theoretical study on the swimming of migratory gyrotactic microorganisms in a non-Newtonian blood-based nanofluid via an anisotropically narrowing artery. Sutterby fluid model is used in order to understand the rheology of the blood as a non-Newtonian fluid model. This fluid pattern has the ability to show Newtonian and non-Newtonian features. The mathematical formulation is performed via continuity, temperature, motile microorganism, momentum, and concentration equation. The series solutions are obtained using the perturbation scheme up to the third-order approximation. The resulting solutions are discussed with the help of graphs for all the leading …


Adverse Effects Of A Hybrid Nanofluid In A Wavy Non-Uniform Annulus With Convective Boundary Conditions, H. Sadaf, Sara I. Abdelsalam Jan 2020

Adverse Effects Of A Hybrid Nanofluid In A Wavy Non-Uniform Annulus With Convective Boundary Conditions, H. Sadaf, Sara I. Abdelsalam

Basic Science Engineering

The presented investigation theoretically studies the physical characteristics of a two-dimensional incompressible hybrid nanofluid in a non-uniform annulus where the boundaries are flexible. A mixed convective peristaltic mechanism is implemented to model blood-based nanofluids using two different nanoparticles (Ag + Al2O3). Convective boundary conditions are employed and different forms of nanoparticles are discussed (bricks, cylinders and platelets). The problem is shortened by engaging a lubrication method. Exact expressions for the temperature of cumulative heat source/sink standards, hemodynamic velocity, pressure gradient and streamlines of different shapes of nanoparticles are obtained. Special cases of pure blood and the Al2O3 nanofluid of our …


Editorial: Recent Trends In Computational Fluid Dynamics, M. M. Bhatti, M. Marin, A. Zeeshan, Sara I. Abdelsalam Jan 2020

Editorial: Recent Trends In Computational Fluid Dynamics, M. M. Bhatti, M. Marin, A. Zeeshan, Sara I. Abdelsalam

Basic Science Engineering

No abstract provided.


Fluids In Music: The Mathematics Of Pan’S Flutes, Bogdan Nita, Sajan Ramanathan Oct 2019

Fluids In Music: The Mathematics Of Pan’S Flutes, Bogdan Nita, Sajan Ramanathan

Department of Mathematics Facuty Scholarship and Creative Works

We discuss the mathematics behind the Pan’s flute. We analyze how the sound is created, the relationship between the notes that the pipes produce, their frequencies and the length of the pipes. We find an equation which models the curve that appears at the bottom of any Pan’s flute due to the different pipe lengths.


School Policy Evaluated With Time-Reversible Markov Chain, Trajan Murphy, Iddo Ben-Ari May 2019

School Policy Evaluated With Time-Reversible Markov Chain, Trajan Murphy, Iddo Ben-Ari

Honors Scholar Theses

In this work we propose a reversible Markov chain scheme to model for the mobility of students affected by a grade school leveling policy. This model provides unified and mathematically tractable framework in which transition functions are sampled uniformly from the set of {\bf reversible} transition functions. The results from the study appear to confirm the disadvantageous effects of this school policy, on par with the of a previous model on the same policy.


Dynamic Attribute-Level Best Worst Discrete Choice Experiments, Amanda Working, Mohammed Alqawba, Norou Diawara May 2019

Dynamic Attribute-Level Best Worst Discrete Choice Experiments, Amanda Working, Mohammed Alqawba, Norou Diawara

Mathematics & Statistics Faculty Publications

Dynamic modelling of decision maker choice behavior of best and worst in discrete choice experiments (DCEs) has numerous applications. Such models are proposed under utility function of decision maker and are used in many areas including social sciences, health economics, transportation research, and health systems research. After reviewing references on the study of such experiments, we present example in DCE with emphasis on time dependent best-worst choice and discrimination between choice attributes. Numerical examples of the dynamic DCEs are simulated, and the associated expected utilities over time of the choice models are derived using Markov decision processes. The estimates are …


From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto Mar 2019

From Big Science To “Deep Science”, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

The Standard Model of particle physics has accomplished a great deal including the discovery of Higgs boson in 2012. However, since the supersymmetric extension of the Standard Model has not been successful so far, some physicists are asking what alternative deeper theory could be beyond the Standard Model? This article discusses the relationship between mathematics and physical reality and explores the ways to go from Big Science to “Deep Science”.


An Information Theory-Based Approach To Assessing Spatial Patterns In Complex Systems, Tarsha Eason, Wen Ching-Chuang, Shana Sundstrom, Heriberto Cabezas Jan 2019

An Information Theory-Based Approach To Assessing Spatial Patterns In Complex Systems, Tarsha Eason, Wen Ching-Chuang, Shana Sundstrom, Heriberto Cabezas

School of Natural Resources: Faculty Publications

Given the intensity and frequency of environmental change, the linked and cross-scale nature of social-ecological systems, and the proliferation of big data, methods that can help synthesize complex system behavior over a geographical area are of great value. Fisher information evaluates order in data and has been established as a robust and effective tool for capturing changes in system dynamics, including the detection of regimes and regime shifts. The methods developed to compute Fisher information can accommodate multivariate data of various types and requires no a priori decisions about system drivers, making it a unique and powerful tool. However, the …


New Insight Into Aunp Applications In Tumour Treatment And Cosmetics Through Wavy Annuli At The Nanoscale, Sara I. Abdelsalam, M. M. Bhatti Jan 2019

New Insight Into Aunp Applications In Tumour Treatment And Cosmetics Through Wavy Annuli At The Nanoscale, Sara I. Abdelsalam, M. M. Bhatti

Basic Science Engineering

The purpose of this study is to probe the peristaltic propulsion of a non-Newtonian fluid model with suspended gold nanoparticles. The base fluid is considered to simulate blood using the Carreau fluid model. We model a small annulus as a tube with a peristaltic wave containing a clot propagating towards the tube wall. An external variable magnetic field is also considered in the governing flow. An approximation for long wavelengths and small Reynolds numbers is employed to formulate the governing flow problem. The resulting nonlinear equations are solved using a perturbation scheme. Series solutions are obtained for the velocity profile, …


Integrable Cosmological Model With Van Der Waals Gas And Matter Creation, Rossen Ivanov, Emil Prodanov Jan 2019

Integrable Cosmological Model With Van Der Waals Gas And Matter Creation, Rossen Ivanov, Emil Prodanov

Articles

A cosmological model with van der Waals gas and dust has been studied in the context of a three-component autonomous non-linear dynamical system involving the time evolution of the particle number density, the Hubble parameter and the temperature. Due to the presence of a symmetry of the model, the temperature evolution law is determined (in terms of the particle number density) and with this the dynamical system reduces to a two-component one which is fully integrable. The globally conserved Hamiltonian is identified and, in addition to it, some special (second) integrals, defined and conserved on a lower-dimensional manifold, are found. …