Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Thin Films

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 29 of 29

Full-Text Articles in Physical Sciences and Mathematics

Fabrication Of Mof Films Of Uio Or Pcn Type Through Layer-By-Layer Molecular Deposition As Well As Bulk Deposition For Catalytic Applications, John Ozdemir May 2022

Fabrication Of Mof Films Of Uio Or Pcn Type Through Layer-By-Layer Molecular Deposition As Well As Bulk Deposition For Catalytic Applications, John Ozdemir

Graduate Theses and Dissertations

Metal-organic frameworks (MOFs) are crystalline, porous materials comprised of symmetric organic linkers coordinated to positively charged metal atoms or metal oxide nodes. This dissertation uses strategies in crystal engineering to advance the study of functional MOFs with emphasis on thin film deposition. The first chapter of this dissertation will introduce the field of reticular chemistry to the reader and describe synthetic efforts to develop useful building blocks for MOF materials: namely porphyrin macrocycles and carboxylate capped zirconium-oxo and hafnium-oxo clusters. The building blocks for MOFs developed in the first chapter will be employed in the second and third chapters through …


Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette May 2021

Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette

Student Research Projects

This report covers the development of the pressure-temperature control system used in the production of small superconducting RF cavities for particle accelerators. To test the validity of the created program, a model for the process was created and tested. The model was used to fine tune the control system before integrating it into the lab. The end goal of the control system is to measure the pressure inside of a deposition vacuum chamber, convert that pressure to a temperature, and use that temperature in tandem with a PID controller to control the current passing though a molybdenum filament which is …


Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom Jan 2021

Development And Characterization Of Nb₃N/Al₂0₃ Superconducting Multilayers For Particle Accelerators, Chris Sundahl, Junki Makita, Paul B. Welander, Yi-Feng Su, Fumitake Kametani, Lin Xie, Huimin Zhang, Lian Li, Alex Gurevich, Chang-Beom Eom

Physics Faculty Publications

Superconducting radio-frequency (SRF) resonator cavities provide extremely high quality factors > 1010 at 1-2 GHz and 2 K in large linear accelerators of high-energy particles. The maximum accelerating field of SRF cavities is limited by penetration of vortices into the superconductor. Present state-of-the-art Nb cavities can withstand up to 50 MV/m accelerating gradients and magnetic fields of 200-240 mT which destroy the low-dissipative Meissner state. Achieving higher accelerating gradients requires superconductors with higher thermodynamic critical fields, of which Nb3Sn has emerged as a leading material for the next generation accelerators. To overcome the problem of low vortex penetration …


Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette Jan 2021

Development And Implementation Of A Pressure-Temperature Control System For The Physical Vapor Deposition Of Copper And Niobium From A Molybdenum Filament In The Development Of Superconducting 3d Printed Rf Cavity Particle Accelerators, Chandler J. Fleuette

Honors Theses and Capstones

This report covers the development of the pressure-temperature control system used in the production of small superconducting RF cavities for particle accelerators. To test the validity of the created program, a model for the process was created and tested. The model was used to fine tune the control system before integrating it into the lab. The end goal of the control system is to measure the pressure inside of a deposition vacuum chamber, convert that pressure to a temperature, and use that temperature in tandem with a PID controller to control the current passing though a molybdenum filament which is …


Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii Apr 2020

Growth And Characterization Of 2d Layered Materials, Algene Fryer Ii

USF Tampa Graduate Theses and Dissertations

2D layered materials are becoming an important area of research due to their exceptional electrical and optical properties. Specifically, 2D layered monochalcogenides are known for their high carrier motilities, whereas layered metal halides have been shown to have noteworthy photoresponsivity. Despite the assortment of 2D layered materials, the search for reliable and scalable synthesis methods is still a challenge in this family of materials. Often a certain growth technique will compromise a desirable trait needed for further fabrication, such as the quality of the crystal or its coverage on a substrate. In this study, two growth techniques that incorporate changeable …


Semitransparent Sb2s3 Thin Film Solar Cells By Ultrasonic Spray Pyrolysis For Use In Solar Windows, Jako S. Eensalu, Atanas Katerski, Erki Kärber, Lothar Weinhardt, Monika Blum, Clemens Heske, Wanli Yang, Ilona Oja Acik, Malle Krunks Dec 2019

Semitransparent Sb2s3 Thin Film Solar Cells By Ultrasonic Spray Pyrolysis For Use In Solar Windows, Jako S. Eensalu, Atanas Katerski, Erki Kärber, Lothar Weinhardt, Monika Blum, Clemens Heske, Wanli Yang, Ilona Oja Acik, Malle Krunks

Chemistry and Biochemistry Faculty Research

The integration of photovoltaic (PV) solar energy in zero-energy buildings requires durable and efficient solar windows composed of lightweight and semitransparent thin film solar cells. Inorganic materials with a high optical absorption coefficient, such as Sb2S3 (>105 cm−1 at 450 nm), offer semitransparency, appreciable efficiency, and long-term durability at low cost. Oxide-free throughout the Sb2S3 layer thickness, as confirmed by combined studies of energy dispersive X-ray spectroscopy and synchrotron soft X-ray emission spectroscopy, semitransparent Sb2S3 thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO2/Sb2S3/P3HT/Au solar cell, a power conversion …


Investigation Of Constant Volume And Constant Flux Initial Conditions On Bidensity Particle-Laden Slurries On An Incline, Dominic Diaz, Jessica Bojorque, Joshua Crasto, Margaret Koulikov, Tameez Lati, Aviva Prins, Andrew Shapiro, Clover Ye, David Arnold, Michael R. Lindstrom Dec 2019

Investigation Of Constant Volume And Constant Flux Initial Conditions On Bidensity Particle-Laden Slurries On An Incline, Dominic Diaz, Jessica Bojorque, Joshua Crasto, Margaret Koulikov, Tameez Lati, Aviva Prins, Andrew Shapiro, Clover Ye, David Arnold, Michael R. Lindstrom

School of Mathematical and Statistical Sciences Faculty Publications and Presentations

Particle-laden slurries are pervasive in both natural and industrial settings, whenever particles are suspended or transported in a fluid. Previous literature has investigated the case of a single species of negatively buoyant particles suspended in a viscous fluid. On an incline, three distinct regimes emerge depending on the particle concentration and inclination angle: settled (where particles settle and there is a pure fluid front), well-mixed (where particle concentration is constant throughout), and ridged (where a particle-rich ridge leads the flow). Recently, the same three regimes were also found for constant volume two species bidensity slurries. We extend the literature on …


Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar Oct 2019

Modeling And Simulation Of Driven Nanopatterning Of Bulk-Material And Thin-Film Surfaces, Ashish Kumar

Doctoral Dissertations

Material nanostructures such as nanowires, quantum dots, and nanorings have a wide variety of applications in electronic and photonic devices among numerous others. Assembling uniformly arranged and consistently sized nanostructure patterns on solid material surfaces is a major challenge for nanotechnology. This dissertation focuses on developing predictive models capable of simulation and analysis of such nanopattern formation on bulk material and strained thin film surfaces. Single-layer atomic clusters (islands) of sizes larger than a critical size on crystalline conducting substrates undergo morphological instabilities when driven by an externally applied electric field or thermal gradient. We have conducted a systematic and …


Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein Nov 2018

Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein

USF Tampa Graduate Theses and Dissertations

Metal-organic frameworks stand at the frontiers of molecular electronic research because they combine desirable physical properties of organic and inorganic components. They are crystalline porous solids constructed by inorganic nodes coordinated to organic ligands to form 1D, 2D, or 3D structures. They possess unique characteristics such as ultrahigh surface area crystal lattices up to 10000 m2 g-1, and tunable nanoporous sizes ranging from 0.2 to 50 nm. Their unprecedented structural diversity and flexibility beyond solid state materials can lead to unique properties such as tailorable electronic and ionic conductivity which can serve as interesting platforms for a …


Growth And Characterization Of Znse Thin Films By Rf Magnetron Co-Sputtering, Hallie Miller May 2018

Growth And Characterization Of Znse Thin Films By Rf Magnetron Co-Sputtering, Hallie Miller

Honors Projects and Presentations: Undergraduate

Zinc-selenide, ZnSe,is aII-IV semiconductor that is known for its wide band gap of ~2.6 eV. In the growing world of advanced electronics, ZnSe thin films are useful to study in order to widen our understanding of semiconductor physics and to enable us to create and develop higher preforming electronics. In this study, we have grown ZnSe thin films by radio frequency (RF) magnetron sputtering. We are specifically seeking to understand how the ratio of Zinc to Selenium,and the temperature the films are grown at, affects the band gap and crystalline structure. Ten different ratios of Zn to Se were grown, …


In Situ Extrinsic Doping Of Cdte Thin Films For Photovoltaic Applications, Imran Suhrid Khan Mar 2018

In Situ Extrinsic Doping Of Cdte Thin Films For Photovoltaic Applications, Imran Suhrid Khan

USF Tampa Graduate Theses and Dissertations

The Cadmium Telluride thin film solar cell is one of the leading photovoltaic technologies. Efficiency improvements in the past decade made it a very attractive and practical source of renewable energy. Considering the theoretical limit, there is still room for improvement, especially the cell’s open circuit voltage (VOC). To improve VOC, the p-type carrier concentration and minority carrier lifetime of the CdTe absorber needs to be improved. Both these parameters are directly related to the point defect distribution of the semiconductor, which is a function of deposition stoichiometry, dopant incorporation and post-deposition treatments.

CdTe films were deposited by the Elemental …


Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar Jan 2018

Electrodeposited Semiconductor Nanostructures & Epitaxial Thin Films For Flexible Electronics, Naveen Kumar Mahenderkar

Doctoral Dissertations

"Single-crystal Si is the bedrock of semiconductor devices due to the high crystalline perfection which minimizes electron-hole recombination, and the dense native silicon oxide which minimizes surface states. To expand the palette of electronic materials beyond planar Si, an inexpensive source of highly ordered material is needed that can serve as an inert substrate for the epitaxial growth of grain boundary-free semiconductors, photonic materials, and superconductors. There is also a need for a simple, inexpensive, and scalable fabrication technique for the growth of semiconductor nanostructures and thin films. This dissertation focuses on the fabrication of semiconducting nanowires (polycrystalline Ge & …


New Chemistry For The Growth Of First-Row Transition Metal Films By Atomic Layer Deposition, Joseph Peter Klesko Jan 2016

New Chemistry For The Growth Of First-Row Transition Metal Films By Atomic Layer Deposition, Joseph Peter Klesko

Wayne State University Dissertations

Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the …


Novel Block Copolymer Architectures For Lithography-Relevant Self-Assembly, Jeffery Hakim Hayat Dec 2015

Novel Block Copolymer Architectures For Lithography-Relevant Self-Assembly, Jeffery Hakim Hayat

Theses and Dissertations

This dissertation is focused on the synthesis, characterization, self-assembly, and materials processing of various functionalized block copolymer systems. A variety of monomers were prepared and polymerized through various polymerization techniques including atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, and ring-opening metathesis polymerization. Self-assembly of the functionalized block copolymers led to well-defined nanostructures in bulk and thin films. These materials have the capability to be utilized in various applications including ordered catalysts and templates for nanolithography. In Chapter 1, the overall background of diblock and triblock copolymers and their preparation methods is in this dissertation. Major research objectives of …


Structure And Optical Properties Of Transition Metal Dichalcogenides (Tmds) – Mx2 (M = Mo, W & X = S, Se) Under High Pressure And High Temperature Conditions, Nirup Reddy Bandaru Aug 2015

Structure And Optical Properties Of Transition Metal Dichalcogenides (Tmds) – Mx2 (M = Mo, W & X = S, Se) Under High Pressure And High Temperature Conditions, Nirup Reddy Bandaru

UNLV Theses, Dissertations, Professional Papers, and Capstones

Layered structured materials such as transition metal dichalcogenides (TMDs) have gained immense interest in recent times due to their exceptional structural, electrical and optical properties. Recent studies show semiconducting TMDs such as MX2 (M= Mo, W & X = S, Se) could be used as potential shock absorbing material, which has resulted in extensive studies on structural stability of these materials under the influence of high pressure. Understanding the structural stability of transition metal dichalcogenides (TMDs) such as MoS2, MoSe2, WS2, and WSe2 under high pressure has been very challenging due to contradicting observations and interpretations reported in the …


Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez Jan 2015

Molecular Dynamics Study On Defect Reduction Strategies Towards The Fabrication Of High Performance Cd1-Xznxte/Cds Solar Cells, Jose Juan Chavez

Open Access Theses & Dissertations

Cadmium Telluride is a material widely used in terrestrial thin film photovoltaic applications due to its nearly ideal band gap (~1.5 eV) and high absorption coefficient. Due to its low manufacturing cost, this technology has the potential to become a significant energy resource if higher energy conversion efficiencies are achieved. However, the module efficiencies (~14%) are still far from the theoretical maximum (~30%) for this material in a single junction configuration. The reason behind this low performance is attributed to the high number of defects that are present within the device materials. The physics behind the formation mechanisms of these …


Polariton Evaporation: The Blackbody Radiation Nature Of The Low-Frequency Radiation Emitted By Radiative Polaritons To The Surrounding Space, Yosep Schwab, Harkirat S. Mann, Brian N. Lang, Giovanna Scarel Apr 2014

Polariton Evaporation: The Blackbody Radiation Nature Of The Low-Frequency Radiation Emitted By Radiative Polaritons To The Surrounding Space, Yosep Schwab, Harkirat S. Mann, Brian N. Lang, Giovanna Scarel

Department of Physics and Astronomy - Faculty Scholarship

Upon formation, radiative polaritons in thin oxide films or crystals emit radiation to the surrounding space. This radiation is confined in a small range of the microwave to far-infrared region of the electromagnetic spectrum, independently of the oxide chemistry. This work shows that the low-frequency radiation is blackbody radiation associated with a temperature directly related to the boson character of the radiative polaritons and to their amount. The proximity of this temperature to absolute zero Kelvin explains the confinement of the frequency. This phenomenon is named polariton evaporation.


Combining Monte Carlo Transport And Level Set Surface Evolution For Modeling Vapor Phase Deposition Of Thin Films Over Sub-Micron Features, John Lewis Smith Jan 2014

Combining Monte Carlo Transport And Level Set Surface Evolution For Modeling Vapor Phase Deposition Of Thin Films Over Sub-Micron Features, John Lewis Smith

Graduate Theses - Chemical Engineering

A hybrid scheme is used to model the vapor phase deposition of thin films at the feature scale. The transport of the chemical species to the substrate surface is modeled with a Collisionless Direct Simulation Monte Carlo (DSMC) method. The Level Set Method is used to model the growth of the thin-film on the substrate. The convergence criteria for these methods were not found in literature.

The governing equations for the Level Set Method are, in general, non-linear partial differential equations. The coupling of the DSMC Method with the Level Set Method results in a set of non-Gaussian stochastic non-linear …


Neutron Study Of Structured Polymers At Interfaces, Thusitha Etampawala Dec 2013

Neutron Study Of Structured Polymers At Interfaces, Thusitha Etampawala

All Dissertations

This work focuses on interfacial structure and dynamics of structured polymers in thin films and in solutions using neutron techniques accompanied by atomic force microscopy. We probed polymers with a common theme that were highly segregated either because of presence of ionic groups or topological constraints. In these polymers the interfacial regions often define their function in different applications such as clean energy, printing adhesions and drug delivery systems. Thin film studies include systems of polystyrene/sulfonated polystyrene, a rigid sulfonated polyphenylene and polystyrene three-arm stars/linear polystyrene. The first two systems include ionic components and the last exhibits topological constraints. Polystyrene …


Growth Of Zno Thin Films On Polar Oxide Surfaces By Atomic Layer Deposition, Kallol Pradhan Aug 2013

Growth Of Zno Thin Films On Polar Oxide Surfaces By Atomic Layer Deposition, Kallol Pradhan

Theses and Dissertations

Polar heterointerfaces of MgO(111) and the II-VI semiconductor ZnO are of technological interest for transparent conducting electrode applications. Growth and structure of thin films on polar surfaces can be different than on non-polar surfaces due to the large surface energy of polar surfaces. We have grown ZnO on unreconstructed MgO(111)-(1x1)-OH terminated and reconstructed MgO(111)-(√3x√3)R30° polar oxide surfaces using atomic layer deposition. A homemade UHV-interfaced viscous-flow atomic layer deposition (ALD) reactor with in-situ quartz crystal monitor was used to grow ZnO thin films on the MgO(111) substrates. Surface morphology studies revealed that the surface roughness increases with ZnO film thickness and …


Nonlinear Effects In Magnetic Garnet Films And Nonreciprocal Optical Bloch Oscillations In Waveguide Arrays, Pradeep Kumar Jan 2013

Nonlinear Effects In Magnetic Garnet Films And Nonreciprocal Optical Bloch Oscillations In Waveguide Arrays, Pradeep Kumar

Dissertations, Master's Theses and Master's Reports - Open

This dissertation presents detailed experimental and theoretical investigations of nonlinear and nonreciprocal effects in magnetic garnet films. The dissertation thus comprises two major sections. The first section concentrates on the study of a new class of nonlinear magneto-optic thin film materials possessing strong higher order magnetic susceptibility for nonlinear optical applications. The focus was on enlarging the nonlinear performance of ferrite garnet films by strain generation and compositional gradients in the sputter-deposition growth of these films. Under this project several bismuth-substituted yttrium iron garnet (Bi,Y) 3 (Fe,Ga)5 O12(acronym as Bi:YIG) films have been sputter-deposited over gadolinium gallium …


Crystal Structure, Phase, And Optical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Alejandro Ortega Jan 2013

Crystal Structure, Phase, And Optical Properties Of Yttrium-Doped Hafnium Oxide Nanocrystalline Thin Films, Alejandro Ortega

Open Access Theses & Dissertations

Yttrium-doped hafnium oxide (YDH) nanocrystalline films were produced by sputter-deposition at various substrate times and temperatures, to produce YDH films in a wide range of thicknesses, dYDH∼25 to 1100 nm. The deposition was made onto optical grade quartz and sapphire substrates. Samples deposited on sapphire were subject to post-deposition annealing (PDA) at various times (3-24 hr) and temperatures (1100 - 1500 °C). The effect of d[special characters omitted]YDH on the crystal structure, surface/interface morphology and optical properties of YDH films was investigated. X-ray diffraction analyses revealed the formation of monoclinic phase for relatively thin films (<150nm). The evolution towards stabilized cubic phase with increasing dYDH [special characters omitted]is observed. The scanning electron microscopy results indicate the dense, columnar structure of YDH films as a function of dYDH. Spectrophotometry analyses indicate that the grown YDH films are transparent and exhibit interference fringes. The band gap was found to be ∼ 5.60 eV for monoclinic YDH films while distinct separation and an increase in band gap to 6.03 eV is evident with increasing dYDH and formation cubic YDH films. The PDA films band gaps were found to be between 5.31 and 5.72 eV, all of which exhibit secondary gaps. A correlation between growth conditions, annealing, phase evolution, and optical properties of the YDH nanocrystalline thin films is established.


Photorefractive Thin Films And Polymers For Use In Organic-Inorganic Hybrid Cells, Steven Harris Buller Jan 2012

Photorefractive Thin Films And Polymers For Use In Organic-Inorganic Hybrid Cells, Steven Harris Buller

Browse all Theses and Dissertations

Two classes of materials were investigated as possible replacements for the bulk photorefractive windows in inorganic-organic hybrid cells: thin films and polymers. Each material was fabricated and subsequently characterized using two different methods due to their different stages of development. The thin films were characterized by X-ray diffraction while the polymers were characterized by two-beam coupling. Thin films of strontium barium niobate and potassium niobate were grown, using pulsed laser deposition, on four different substrates. It was found that it was possible to grow a thin film of potassium niobate in the correct orientation to replace a bulk photorefractive window. …


Dielectric Constant Measurements Using Atomic Force Microscopy System, Hembathanthirige Yasas Dhanapala Jan 2012

Dielectric Constant Measurements Using Atomic Force Microscopy System, Hembathanthirige Yasas Dhanapala

Browse all Theses and Dissertations

A new technique to obtain local dielectric constant of thin films was developed using atomic force microscopy system. This technique, in addition to other characterization methods such as AFM imaging and X-Ray diffraction, was used to study, as an example, dielectric constant of thin films of 0.3BiScO3 - 0.7BaTiO3. The thin films were fabricated by using pulsed laser deposition technique under following temperature of the substrate: 6500C, 7000C and 7500C. At each temperature, two different oxygen pressures were used in deposition chamber: 50 mTorr and 100 mTorr. Our goal was to find optimal growth conditions with the highest dielectric constant …


An Investigation Of Pinning Landscapes With Engineered Defects: Contact-Free Critical Current Density Measurements, John William Sinclair Dec 2011

An Investigation Of Pinning Landscapes With Engineered Defects: Contact-Free Critical Current Density Measurements, John William Sinclair

Doctoral Dissertations

Pinning landscapes in modern second generation coated conductors are excellent candidates for studies of vortex pinning. The ability to produce engineered defects in thin films of high temperature superconductors allows one to investigate representative distinct pinning sites, with the objective of understanding how different pinning centers contribute, compete and evolve under varying conditions of magnetic field strength and orientation, and temperature.New contact-free methods were developed specifically to investigate this system in new ways, especially the dependence of the critical current density Jc on orientation of the magnetic field. A superconducting quantum interference device (SQUID)-based magnetometer was used to determine angular …


The Effects Of Rare Earth Doping On Gallium Nitride Thin Films, Stephen R. Mchale Sep 2011

The Effects Of Rare Earth Doping On Gallium Nitride Thin Films, Stephen R. Mchale

Theses and Dissertations

The thermal neutron capture cross section of the rare earth (RE) metal isotope Gd-157 is the largest of all known natural elements, which distinguishes the material as a logical candidate for neutron detection. To address an incomplete understanding of rare earth doped Gallium Nitride (GaN) materials, investigations of the surface electronic structure and interface properties of GaN thin films doped with rare earths (Yb, Er, Gd) were undertaken. Lattice ion occupation, bonding, rare earth 4f occupation, and gold Schottky barrier formation were examined using synchrotron photoemission spectroscopy. Measured Debye temperatures indicate substitutional occupation of Ga sites by RE ions. The …


Microstructure And Property Evaluation Of Lifepo4 Thin Films For Application In Microbatteries, Jose Marcos Mares Jan 2010

Microstructure And Property Evaluation Of Lifepo4 Thin Films For Application In Microbatteries, Jose Marcos Mares

Open Access Theses & Dissertations

The shortage of fossil fuels and the requirements to produce clean, environmental friendly, efficient, and economical energy are the principal problems in the context of energy technology for current and future generations. Therefore, advanced energy storage and conversion capabilities with higher capacity and efficiency are desired. Currently, there is an enormous interest in the development of high energy density rechargeable batteries for use in domestic applications, automotive industries and portable electronic applications. The present research focuses on the development of LiFePO4 thin films for solid-state thin-film microbatteries. The present effort was performed with a specific purpose of understanding the effect …


Fabrication Of Zinc Oxide Thin Films For Renewable Energy And Sensor Applications, Theresa Y. Hill Jan 2010

Fabrication Of Zinc Oxide Thin Films For Renewable Energy And Sensor Applications, Theresa Y. Hill

Browse all Theses and Dissertations

Progress in commercializing renewable energy technologies is being advanced by developments in Zinc Oxide material science. The photovoltaic cell, for example, generates electricity by receiving solar energy into the cell, generating electrons, and simultaneously transporting electrical charge out of the cell. Metals are capable of removing electrical charge but block transmission of sunshine. Glass and plastics are capable of transmitting sunshine but block the removal of electrical charge. Therefore an exterior layer that is both optically transparent and electrically conductive is desirable. Transparent conductive oxides (TCOs) are the ideal material for such applications since they are capable of both functions. …


Comparative Study Of Structural Properties Of Yba2cu3o7 Thin Films On Srtio3 Single Crystal And Bicrystal Substrates By X- Ray Diffraction, M. Navacerrada, A. Mehta, H. Sahibudeen, Juana Acrivos Jan 2005

Comparative Study Of Structural Properties Of Yba2cu3o7 Thin Films On Srtio3 Single Crystal And Bicrystal Substrates By X- Ray Diffraction, M. Navacerrada, A. Mehta, H. Sahibudeen, Juana Acrivos

Faculty Publications, Chemistry

We present a comparative study in terms of structural properties deduced from X - ray diffraction diagrams between YBa2Cu3O7 (YBCO) thin films fabricated on SrTiO3 (STO) single crystal substrates and bicrystallines substrates with a symmetrical tilt angle of 24 degrees. Periodic Lattice Distortions (PLD) have been observed around different Bragg peaks in YBCO thin films deposited on STO bicrystals while only diffraction peaks have been measured in the diagrams corresponding to the YBCO thin films deposited on STO single crystal substrates. Only in regions situated a 3.5 mm at both sides of the grain boundary the PDL have been investigated. …