Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Superconductor

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 46

Full-Text Articles in Physical Sciences and Mathematics

Impact Of F-D Kondo Cloud On Superconductivity Of Nickelates, Byungkyun Kang, Hyunsoo Kim, Qiang Zhu, Chul Hong Park Mar 2023

Impact Of F-D Kondo Cloud On Superconductivity Of Nickelates, Byungkyun Kang, Hyunsoo Kim, Qiang Zhu, Chul Hong Park

Physics Faculty Research & Creative Works

The Discovery of Superconducting Nickelates Reignited Hope for Elucidating the High-Tc Superconductivity Mechanism in Isostructural Cuprates. While the Superconducting Gap Opens Up on a Single Band of the Quasi-2D Fermi Surface in the Cuprates, the Nickelates Are Known to Have a 3D Nature of an Electronic Structure with a Multi-Band. This Raises a Serious Question About the Role of the 2D Nature for the High-Tc Superconductivity. Here, Employing GW + Dynamical Mean Field Theory (DMFT), We Report the Kondo Effect Driven by the Strong Correlation of Nd-4f and Ni-3d Electrons Emerging at Low Temperature. the Kondo Effect Modifies …


Magnetic Charge Ordering Of Pinwheel Artificial Spin Ice In In-Plane External Magnetic Fields And Its Application For Tunable Vortex Pinning, Timothy Draher Jan 2022

Magnetic Charge Ordering Of Pinwheel Artificial Spin Ice In In-Plane External Magnetic Fields And Its Application For Tunable Vortex Pinning, Timothy Draher

Graduate Research Theses & Dissertations

Pinwheel artificial spin ice (ASI) systems fabricated using permalloy nanobars offer tunable control of superconducting vortices in an ASI-superconductor hybrid. Vortex pinningis achieved by tuning the ordering of the ASI’s magnetic charge distribution via an external field to create an optimal potential energy landscape to which superconducting vortex motion can be impeded or pinned. Magnetic charge ordering in a pinwheel ASI is visualized using MuMax3 micromagnetic simulations to aid in characterizing the correlation of charge ordering amongst the spin ice system with the application of the external field. Vortex pinning is characterized in a sample of pinwheel spin ice patterned …


Collected Papers (On Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics), Volume Xi, Florentin Smarandache Jan 2022

Collected Papers (On Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics), Volume Xi, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with 84 co-authors from 19 countries.


Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano Jan 2022

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano

Physics Faculty Publications

The SIS structure which consists of alternative thin layers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer superconductors in an external magnetic field is essential to optimize their SRF performance. In this work we report the development of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and multilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a parallel surface magnetic field up to 0.5 T …


Design, Synthesis And Characterization Of New Superconductors, Xin Gui Jun 2020

Design, Synthesis And Characterization Of New Superconductors, Xin Gui

LSU Doctoral Dissertations

Design and synthesis of new materials are a long-standing goal for chemistry, physics and material science, especially those with intriguing properties such as magnetism and superconductivity. With consideration and incorporation of the highlights in some existing design rules, we successfully designed and discovered the superconductivity in BaPt2Bi2, SrSnP and YbxPt5P.

With the help of valence electron counting method, we synthesized a new intermetallic compound, BaIr2Ge2, which was then found to be non-superconducting above 1.8 K. Thus, we considered both valence electron counting and chemical pressure adjustment to reach …


Non-Local Spin Valve Interferometer: Experimental Observation Of Superconducting Spin Current And Spin Aharonov-Bohm Effect, Ning Lu Apr 2019

Non-Local Spin Valve Interferometer: Experimental Observation Of Superconducting Spin Current And Spin Aharonov-Bohm Effect, Ning Lu

Theses and Dissertations

An electron interferometer was designed and fabricated via a normal metal (supercon- ductor)/insulator/ferromagnet non-local lateral spin valve with a ring-shaped normal metal/insulator spacer, and spin current interference was observed. At 4.2 K, a very high spin signal of 200 mΩ was found in a device with 2 µm injector-detector dis- tance and magnetic field swept parallel to the plane. With a perpendicular magnetic field sweep, a Hanle effect measurement showed both spin precession and h/e oscil- lation. Because of the non-adiabatic nature of the precessing spins at low fields as they traverse the normal metal ring, this is an …


A Derivation Of Fluidic Maxwell-Proca Equations For Electrodynamics Of Superconductors & Its Implication To Chiral Cosmology Model, Florentin Smarandache, Victor Christianto, Yunita Umniyati Sep 2018

A Derivation Of Fluidic Maxwell-Proca Equations For Electrodynamics Of Superconductors & Its Implication To Chiral Cosmology Model, Florentin Smarandache, Victor Christianto, Yunita Umniyati

Branch Mathematics and Statistics Faculty and Staff Publications

Mario Liu described a hydrodynamic Maxwell equations [3] and, also discussed potential implications of these new approaches to superconductors which were made after Tajmar’s paper [4]. In this paper, we present for the first time a derivation of fluidic Maxwell-Proca equations. The name of fluidic Maxwell-Proca is proposed because the equations were based on modifying Maxwell-Proca and Hirsch’s theory of electrodynamics of superconductor. It is hoped that this paper may stimulate further investigations and experiments in superconductor. It may be expected to have some impact to cosmology modeling too, for instance we consider a hypothetical argument that photon mass can …


Crystal Growth And Manipulation Of Intercalated Chalcogenides As Superconductors And Topological Insulators, Nathaniel Smith Aug 2018

Crystal Growth And Manipulation Of Intercalated Chalcogenides As Superconductors And Topological Insulators, Nathaniel Smith

Theses and Dissertations

Superconductors are unusual quantum materials which offer no resistance to electric current. The fascinating physics of this phenomenon is complemented by wide-ranging technical applications from power transmission to magnetic levitation. Commercially successful superconductors are found in powerful magnets in medical imaging, particle accelerators, and next-generation quantum computing. In my effort to uncover the mysteries and fundamental mechanisms of superconductivity, I use an array of techniques to synthesize and study single crystals of unconventional superconductors including the iron telluride and bismuth selenide family of superconductors. My study of atomic valence and crystal structure in iron telluride has uncovered previously unknown chemical …


Numerical Studies Of Iron Based Superconductors Using Spin-Fermion Models, Christopher Brian Bishop Dec 2017

Numerical Studies Of Iron Based Superconductors Using Spin-Fermion Models, Christopher Brian Bishop

Doctoral Dissertations

The iron pnictide and iron chalchogenide superconductors are studied numerically using classical Monte Carlo techniques to reproduce experimental data and make predictions about the nature of the relevant interactions. The focus will be using Spin-Fermion models in a classical approximation to explore the phase diagram and calculate important physical properties of these materials over a wide range of temperatures.


Computational Exploration Of Vortex Nucleation In Type Ii Superconductors Using A Finite Element Method In Ginzburg-Landau Theory, Alden Roy Pack Dec 2017

Computational Exploration Of Vortex Nucleation In Type Ii Superconductors Using A Finite Element Method In Ginzburg-Landau Theory, Alden Roy Pack

Theses and Dissertations

Using a finite element method, we numerically solve the time-dependent Ginzburg-Landau equations of superconductivity to explore vortex nucleation in type II superconductors. We consider a cylindrical geometry and simulate the transition from a superconducting state to a mixed state. Using saddle-node bifurcation theory we evaluate the superheating field for a cylinder. We explore how surface roughness and thermal fluctuations influence vortex nucleation. This allows us to simulate material inhomogeneities that may lead to instabilities in superconducting resonant frequency cavities used in particle accelerators.


Computational Exploration Of Vortex Nucleation In Type Ii Superconductors Using A Finite Element Method In Ginzburg-Landau Theory, Alden Roy Pack Dec 2017

Computational Exploration Of Vortex Nucleation In Type Ii Superconductors Using A Finite Element Method In Ginzburg-Landau Theory, Alden Roy Pack

Theses and Dissertations

Using a finite element method, we numerically solve the time-dependent Ginzburg-Landau equations of superconductivity to explore vortex nucleation in type II superconductors. We consider a cylindrical geometry and simulate the transition from a superconducting state to a mixed state. Using saddle-node bifurcation theory we evaluate the superheating field for a cylinder. We explore how surface roughness and thermal fluctuations influence vortex nucleation. This allows us to simulate material inhomogeneities that may lead to instabilities in superconducting resonant frequency cavities used in particle accelerators.


Temperature Dependence Of Dynamical Spin Injection In A Superconducting Niobium Thin Film, Tyler S. Townsend Jan 2017

Temperature Dependence Of Dynamical Spin Injection In A Superconducting Niobium Thin Film, Tyler S. Townsend

Honors Undergraduate Theses

Spintronics is a research field that focuses on the manipulation of the quantum mechanical spin of charge carriers in solid state materials for future technological applications. Creating large spin currents with large relaxation times is sought after in the field of spintronics which may be aided by combining spintronics with superconductivity. This thesis provides a phenomological study of the effective change in ferromagnetic resonance linewidth, by dynamical spin injection into a permalloy-copper-niobium tri-layer in the superconducting state. The ferromagetic resonance linewidth was measured from 2-14 K. It was observed that there was a change in the behavior of the resonance …


Improved Superconducting Properties In The Mg11b2 Low Activation Superconductor Prepared By Low-Temperature Sintering, Fang Cheng, Yongchang Liu, Zongqing Ma, M Shahriar Al Hossain, Mehmet Somer Jan 2016

Improved Superconducting Properties In The Mg11b2 Low Activation Superconductor Prepared By Low-Temperature Sintering, Fang Cheng, Yongchang Liu, Zongqing Ma, M Shahriar Al Hossain, Mehmet Somer

Australian Institute for Innovative Materials - Papers

Mg11B2 has a great application prospect in the superconducting coils for fusion reactor as the "low activation superconductors". The un-doped Mg11B2 and Cu-doped Mg11B2 bulks using 11B as a boron precursor were fabricated by low-temperature sintering in present work. It was found that the prepared Mg11B2 low activation superconductors exhibit better Jc performance than all of other Mg11B2 samples reported in previous studies. As for Cu doped Mg11B2, minor Cu addition can obviously improve the Mg11B2 grain crystallization and reduce the amount of MgO impurity. Hence, improved grain connectivity and higher Jc at low fields is obtained in Cu doped …


High Powered Pulsed Terahertz Light Generation From Superconducting Antenna Arrays, Nicholas C. Padgett Jan 2016

High Powered Pulsed Terahertz Light Generation From Superconducting Antenna Arrays, Nicholas C. Padgett

Browse all Theses and Dissertations

Terahertz radiation is invaluable for use in spectroscopy and imaging work due to its nondestructive nature. It has become a key focus for those wishing to develop sensors capable of detecting weapons and narcotics unobtrusively and at a distance as well as characterizing materials and identifying defects. An ultrafast pulsed (femtoseconds) laser incident on a superconducting ring has been predicted to cause the emission of terahertz (THz) radiation. It is theorized that the radiation is a result of the supercurrent being modulated by the breaking and recombining of Cooper pairs on the order of picoseconds, where the time scale determines …


From JEff=1/2 Insulator To P-Wave Superconductor In Single-Crystal Sr2Ir1−XRuXO4 (0≤X≤1), Shujuan Yuan, Saicharan Aswartham, Jsaminka Terzic, H. Zheng, H. D. Zhao, P. Schlottmann, Gang Cao Dec 2015

From JEff=1/2 Insulator To P-Wave Superconductor In Single-Crystal Sr2Ir1−XRuXO4 (0≤X≤1), Shujuan Yuan, Saicharan Aswartham, Jsaminka Terzic, H. Zheng, H. D. Zhao, P. Schlottmann, Gang Cao

Physics and Astronomy Faculty Publications

Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC) whereas Sr2RuO4 is a p-wave superconductor. The contrasting ground states have been shown to result from the critical role of the strong SOC in the iridate. Our investigation of structural, transport, and magnetic properties reveals that substituting 4dRu4+(4d4) ions for 5dIr4+(5d5) ions in Sr2IrO4 directly adds holes to the t2g bands, reduces the SOC, and thus rebalances the competing energies in single-crystal Sr …


Terahertz Radiation From High-Temperature Superconducting Bscco Mesas Of Various Geometries, Daniel P. Cerkoney Dec 2015

Terahertz Radiation From High-Temperature Superconducting Bscco Mesas Of Various Geometries, Daniel P. Cerkoney

HIM 1990-2015

The purpose of this thesis is to examine the radiation from high-temperature superconducting mesas of Bi2Sr2CaCu2O8+ (BSCCO). This is motivated by the need for coherent sources of continuous wave terahertz (THz) emission capable of radiating practically in the THz frequency band. As BSCCO has been shown to be tunable from 0.5–2.4 THz (i.e., through the entire socalled terahertz gap centered about 1 THz), and has a higher peak operating temperature near 1 THz than most alternative sources, it is a good candidate for imaging and spectroscopy device applications [1]. When a static DC voltage is applied to a BSCCO mesa, …


Superior Critical Current Density Obtained In Mg11b2 Low Activation Superconductor By Using Reactive Amorphous 11b And Optimizing Sintering Temperature, Fang Cheng, Yongchang Liu, Zongqing Ma, Huijun Li, Md Shahriar Hossain Jan 2015

Superior Critical Current Density Obtained In Mg11b2 Low Activation Superconductor By Using Reactive Amorphous 11b And Optimizing Sintering Temperature, Fang Cheng, Yongchang Liu, Zongqing Ma, Huijun Li, Md Shahriar Hossain

Australian Institute for Innovative Materials - Papers

The un-doped Mg11B2 and Cu-doped Mg11B2 bulks using 11B as a boron precursor were fabricated by solid-state reaction and sintered at different temperature in present work. By analyzing the sintering process, it was found that 11B original powder is more reactive and can react with Mg severely even at low temperature before Mg melting, which leads to the formation of refined Mg11B2 grains. Consequently, the critical current density of Mg11B2 sample prepared in this work is higher than that of natural MgB2. Furthermore, it was found that proper Cu addition …


Power-Law Relationship Between Critical Current Density, Microstructure, And The N-Value In Mgb2 Superconductor Wires, Ashkan Motaman, Shaon Barua, Dipak Patel, Minoru Maeda, Kookchae Cheong, Jung Ho Kim, S X. Dou, Md Shahriar Al Hossain Oct 2014

Power-Law Relationship Between Critical Current Density, Microstructure, And The N-Value In Mgb2 Superconductor Wires, Ashkan Motaman, Shaon Barua, Dipak Patel, Minoru Maeda, Kookchae Cheong, Jung Ho Kim, S X. Dou, Md Shahriar Al Hossain

Shi Xue Dou

Dissipation-free MgB2 superconducting wires are valuable in terms of practical applications. Herein, we have found a strong correlation between critical current density (J c ) and the n-value extracted from the electric field versus current density characteristic. The power-law relationship (m) between the J c and the n-value, n∝Jmc , represents a critical index which is strongly dependent on operating temperatures.


Modeling Transport Properties Of Inhomogeneous Superconductor-Metal Composites, A Borroto, L Del Rio, M Arronte, Tom Johansen, E Altshuler Jan 2014

Modeling Transport Properties Of Inhomogeneous Superconductor-Metal Composites, A Borroto, L Del Rio, M Arronte, Tom Johansen, E Altshuler

Australian Institute for Innovative Materials - Papers

We propose a model for a superconductor-metal composite that allows to derive intrinsic transport properties of the superconducting phase based on 2D images of its cross section, and a minimal set of parameters. The method is tested experimentally by using, as model composite, a "transversal bridge" made on a Bi2Sr2Ca2Cu3O10+x (BSCCO)-Ag multi-filamentary tape. It is shown that the approach allows to predict the measured I−⟨E⟩ curves of the filaments. In addition, one can determine the critical current anisotropy between the longitudinal and transverse directions of the Ag-BSCCO tape, and also of …


Power-Law Relationship Between Critical Current Density, Microstructure, And The N-Value In Mgb2 Superconductor Wires, Ashkan Motaman, Shaon Barua, Dipak Patel, Minoru Maeda, Kookchae Cheong, Jung Ho Kim, S X. Dou, Md Shahriar Al Hossain Jan 2014

Power-Law Relationship Between Critical Current Density, Microstructure, And The N-Value In Mgb2 Superconductor Wires, Ashkan Motaman, Shaon Barua, Dipak Patel, Minoru Maeda, Kookchae Cheong, Jung Ho Kim, S X. Dou, Md Shahriar Al Hossain

Australian Institute for Innovative Materials - Papers

Dissipation-free MgB2 superconducting wires are valuable in terms of practical applications. Herein, we have found a strong correlation between critical current density (J c ) and the n-value extracted from the electric field versus current density characteristic. The power-law relationship (m) between the J c and the n-value, n∝Jmc , represents a critical index which is strongly dependent on operating temperatures.


Interplay Between Boron Precursors And Ni-Co-B Nanoparticle Doping In The Fabrication Of Mgb2 Superconductor With Improved Electromagnetic Properties, Mislav Mustapic, Josip Horvat, Zeljko Skoko, Md Shahriar Hossain, S X. Dou Jan 2014

Interplay Between Boron Precursors And Ni-Co-B Nanoparticle Doping In The Fabrication Of Mgb2 Superconductor With Improved Electromagnetic Properties, Mislav Mustapic, Josip Horvat, Zeljko Skoko, Md Shahriar Hossain, S X. Dou

Australian Institute for Innovative Materials - Papers

The influence of different boron precursor powders on the critical current density of MgB2 superconductor with added Ni-Co-B nanoparticles is investigated. Different types of boron have different morphologies, particle sizes and impurity content, all of which have a strong impact on the critical current density (Jc). The boron samples investigated in this study include three different boron powders: semicrystalline boron (denoted as SC), with nanosized particles and high purity (99%) supplied from Specialty Materials, Inc. (USA); amorphous boron (denoted as AB), with nanosized particles and high purity (99%) supplied from Russia; and finally pure crystalline boron (denoted as CB), with …


Equations Of State In A Strongly Interacting Relativistic System, Jason Paul Keith Jan 2014

Equations Of State In A Strongly Interacting Relativistic System, Jason Paul Keith

Open Access Theses & Dissertations

It has long been understood that the ground state of a superdense quark system, a Fermi liquid of weakly interacting quarks, is unstable with respect to the formation of diquark condensates. This nonperturbative phenomenon is essentially equivalent to the Cooper in-stability of conventional BCS superconductivity. As the quark pairs have nonzero color charge, this kind of superconductivity breaks the SU(3) color gauge symmetry, thus the phe-nomenon is called color superconductivity. However, not much is known about the behavior of quark systems at moderate densities between the formation of baryons and asymptotic freedom. Strong theoretical and experimental evidence suggests that there …


Spin-Mediated Transport In Superconducting And Spin-Polarized Systems, Joseph C. Prestigiacomo Jan 2014

Spin-Mediated Transport In Superconducting And Spin-Polarized Systems, Joseph C. Prestigiacomo

LSU Doctoral Dissertations

The effects of spin-imbalance on the electronic transport properties of spin-polarized and superconducting systems have been studied in detail. The transport properties of the quaternary Heusler alloys Co2MnSi1-xAlx (0≤x≤1), which have been theoretically predicted to develop a half-metallic band structure as x→0, were investigated. Resistivity versus temperature measurements as a function of Al concentration (x) revealed a systematic reduction in the residual resistivity ratio as well as a transition from weakly-localized to half-metallic conduction as x→0. From measurements of the ordinary and anomalous Hall effects, the charge carrier concentration was found to increase, while the anomalous Hall coefficient decreased by …


In-Field Jc Improvement By Oxygen-Free Pyrene Gas Diffusion Into Highly Dense Mgb2 Superconductor, Minoru Maeda, Jung Ho Kim, Y Zhao, Yoon-Uk Heo, K Takase, Y Kubota, C Moriyoshi, F Yoshida, Y Kuroiwa, S X. Dou Jun 2013

In-Field Jc Improvement By Oxygen-Free Pyrene Gas Diffusion Into Highly Dense Mgb2 Superconductor, Minoru Maeda, Jung Ho Kim, Y Zhao, Yoon-Uk Heo, K Takase, Y Kubota, C Moriyoshi, F Yoshida, Y Kuroiwa, S X. Dou

Shi Xue Dou

Oxygen-free pyrene gas as a carbon (C) dopant was delinked and incorporated into highly dense MgB2 structure via a gas phase diffusion method. The technique offers the advantages that molecular C is homogeneously distributed into MgB2 and substituted at the boron sites without any severe deterioration of grain connectivity. The C substitution causes a significant shrinkage of the a-lattice parameter and an increase in the lattice strain, resulting in high disorder. The introduction of structural disorder as a result of C doping leads to a considerable enhancement of the in-field critical current density (Jc) and upper critical field.


Design Of A High Temperature Superconductor Magnetic Energy Storage Systems, R L Causley, Christopher Cook, Steve Gower Aug 2012

Design Of A High Temperature Superconductor Magnetic Energy Storage Systems, R L Causley, Christopher Cook, Steve Gower

Christopher Cook

The University of Wollongong (UoW) has received funding for the research and development of a 20 kJ high temperature superconducting magnetic energy storage device (HTS SMES). This SMES will be operated at 25 K in contrast to most existing HTS designs, which operate at 77K. This paper includes a literature review of the current technology for the configuration of the SMES coil and a summary of the work done at UoW to date. Solenoidal and toroidal coils designs are compared to determine which will provide the required level of energy stored for a minimum superconductor and device volume. The design …


Electrochemistry And Staging In La2cuo4+D, P Blakeslee, R J. Birgeneau, F C. Chou, Rebecca J. Christianson, M A. Kastner, Y S. Lee, B O. Wells Jul 2011

Electrochemistry And Staging In La2cuo4+D, P Blakeslee, R J. Birgeneau, F C. Chou, Rebecca J. Christianson, M A. Kastner, Y S. Lee, B O. Wells

Rebecca J. Christianson

Measurements are reported of the time dependence of the current during electrochemical oxidation and reduction at a fixed voltage of single crystals and ceramic samples of La2CuO4+d. Staging peaks in neutron measurements of the single crystals together with the electrochemical measurements and magnetization measurements confirm that stage n=6 corresponds to d=0.055 +/- 0.05, the high-d side of the oxygen-rich–oxygen-poor miscibility gap. Furthermore, stage n=4 occurs at a value of d consistent with d{n^-1. For ceramic samples it is shown that two different superconducting compounds are formed depending on the oxidation voltage used.


Direct Observation Of Nodes And Twofold Symmetry In Fese Superconductor, Canli Song, Yi-Lin Wang, Peng Cheng, Yeping Jiang, Wei Li, Tong Zhang, Zhi Li, Ke He, Lili Wang, Jin-Feng Jia, Hsiang-Hsuan Hung, Congjun Wu, Xu-Cun Ma, Xi Chen, Qi-Kun Xue Jan 2011

Direct Observation Of Nodes And Twofold Symmetry In Fese Superconductor, Canli Song, Yi-Lin Wang, Peng Cheng, Yeping Jiang, Wei Li, Tong Zhang, Zhi Li, Ke He, Lili Wang, Jin-Feng Jia, Hsiang-Hsuan Hung, Congjun Wu, Xu-Cun Ma, Xi Chen, Qi-Kun Xue

Australian Institute for Innovative Materials - Papers

We investigated the electron-pairing mechanism in an iron-based superconductor, iron selenide (FeSe), using scanning tunneling microscopy and spectroscopy. Tunneling conductance spectra of stoichiometric FeSe crystalline films in their superconducting state revealed evidence for a gap function with nodal lines. Electron pairing with twofold symmetry was demonstrated by direct imaging of quasiparticle excitations in the vicinity of magnetic vortex cores, Fe adatoms, and Se vacancies. The twofold pairing symmetry was further supported by the observation of striped electronic nanostructures in the slightly Se-doped samples. The anisotropy can be explained in terms of the orbital-dependent reconstruction of electronic structure in FeSe.


In-Field Jc Improvement By Oxygen-Free Pyrene Gas Diffusion Into Highly Dense Mgb2 Superconductor, Minoru Maeda, Jung Ho Kim, Y Zhao, Yoon-Uk Heo, K Takase, Y Kubota, C Moriyoshi, F Yoshida, Y Kuroiwa, S X. Dou Jan 2011

In-Field Jc Improvement By Oxygen-Free Pyrene Gas Diffusion Into Highly Dense Mgb2 Superconductor, Minoru Maeda, Jung Ho Kim, Y Zhao, Yoon-Uk Heo, K Takase, Y Kubota, C Moriyoshi, F Yoshida, Y Kuroiwa, S X. Dou

Australian Institute for Innovative Materials - Papers

Oxygen-free pyrene gas as a carbon (C) dopant was delinked and incorporated into highly dense MgB2 structure via a gas phase diffusion method. The technique offers the advantages that molecular C is homogeneously distributed into MgB2 and substituted at the boron sites without any severe deterioration of grain connectivity. The C substitution causes a significant shrinkage of the a-lattice parameter and an increase in the lattice strain, resulting in high disorder. The introduction of structural disorder as a result of C doping leads to a considerable enhancement of the in-field critical current density (Jc) and upper critical …


Synthesis And Physical Properties Of Fese1/2 Te1/2 Superconductor, V P. Awana, Anand Pal, Arpita Vajpayee, Monika Mudgel, H Kishan, Mushahid Husain, Rong Zeng, S Yu, Y F. Guo, Y.G Shi, K Yamaura, E Takayama-Muromachi Jan 2010

Synthesis And Physical Properties Of Fese1/2 Te1/2 Superconductor, V P. Awana, Anand Pal, Arpita Vajpayee, Monika Mudgel, H Kishan, Mushahid Husain, Rong Zeng, S Yu, Y F. Guo, Y.G Shi, K Yamaura, E Takayama-Muromachi

Australian Institute for Innovative Materials - Papers

One of the most important properties of very recently reported FeSe based superconductors is the robustness of their superconductivity under applied magnetic field. The synthesis and control of superconductivity in FeSe based compounds is rather a difficult task. Synthesis and physical property characterization for optimized superconductivity of FeSe1/2Te1/2 at 13 K is reported here. The compound crystallized in a tetragonal structure with lattice parameters a=3.8015(2) and c =6.0280(4) Å. Magnetization measurements indicated bulk superconductivity with lower critical field (Hc1) of around 180 Oe. By applying Ginzburg–Landau theory, the Hc2(0) value is estimated to …


Josephson Scanning Tunneling Microscopy: A Local And Direct Probe Of The Superconducting Order Parameter, Richard P. Barber Jr., Hikari Kimura, Shuhei Ono, Yoichi Ando, Robert C. Dynes Oct 2009

Josephson Scanning Tunneling Microscopy: A Local And Direct Probe Of The Superconducting Order Parameter, Richard P. Barber Jr., Hikari Kimura, Shuhei Ono, Yoichi Ando, Robert C. Dynes

Physics

Direct measurements of the superconducting superfluid on the surface of vacuum-cleaved Bi2Sr2CaCu2O8+ BSCCO samples are reported. These measurements are accomplished via Josephson tunneling into the sample using a scanning tunneling microscope STM equipped with a superconducting tip. The spatial resolution of the STM of lateral distances less than the superconducting coherence length allows it to reveal local inhomogeneities in the pair wave function of the BSCCO. Instrument performance is demonstrated first with Josephson measurements of Pb films followed by the layered superconductor NbSe2. The relevant measurement parameter, the Josephson ICRN product, is discussed within the context of both BCS superconductors …