Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Ml4iot: A Framework To Orchestrate Machine Learning Workflows On Internet Of Things Data, Jose Miguel Alves, Leonardo Honorio, Miriam A M Capretz Oct 2019

Ml4iot: A Framework To Orchestrate Machine Learning Workflows On Internet Of Things Data, Jose Miguel Alves, Leonardo Honorio, Miriam A M Capretz

Electrical and Computer Engineering Publications

Internet of Things (IoT) applications generate vast amounts of real-time data. Temporal analysis of these data series to discover behavioural patterns may lead to qualified knowledge affecting a broad range of industries. Hence, the use of machine learning (ML) algorithms over IoT data has the potential to improve safety, economy, and performance in critical processes. However, creating ML workflows at scale is a challenging task that depends upon both production and specialized skills. Such tasks require investigation, understanding, selection, and implementation of specific ML workflows, which often lead to bottlenecks, production issues, and code management complexity and even then may ...


Classification With Measurement Error In Covariates Or Response, With Application To Prostate Cancer Imaging Study, Kexin Luo Aug 2019

Classification With Measurement Error In Covariates Or Response, With Application To Prostate Cancer Imaging Study, Kexin Luo

Electronic Thesis and Dissertation Repository

The research is motivated by the prostate cancer imaging study conducted at the University of Western Ontario to classify cancer status using multiple in-vivo images. The prostate cancer histological image and the in-vivo images are subject to misalignment in the co-registration procedure, which can be viewed as measurement error in covariates or response. We investigate methods to correct this problem.

The first proposed method corrects the predicted class probability when the data has misclassified labels. The correction equation is derived from the relationship between the true response and the error-prone response. The probability for the observed class label is adjusted ...


Machine Learning For Stock Prediction Based On Fundamental Analysis, Yuxuan Huang Apr 2019

Machine Learning For Stock Prediction Based On Fundamental Analysis, Yuxuan Huang

Electronic Thesis and Dissertation Repository

Application of machine learning for stock prediction is attracting a lot of attention in recent years. A large amount of research has been conducted in this area and multiple existing results have shown that machine learning methods could be successfully used toward stock predicting using stocks’ historical data. Most of these existing approaches have focused on short term prediction using stocks’ historical price and technical indicators. In this thesis, we prepared 22 years’ worth of stock quarterly financial data and investigated three machine learning algorithms: Feed-forward Neural Network (FNN), Random Forest (RF) and Adaptive Neural Fuzzy Inference System (ANFIS) for ...


Applicability Of Recurrent Neural Networks To Player Data Analysis In Freemium Video Games, Jonathan Tan Apr 2019

Applicability Of Recurrent Neural Networks To Player Data Analysis In Freemium Video Games, Jonathan Tan

Electronic Thesis and Dissertation Repository

We demonstrate the applicability and practicality of recurrent neural networks (RNNs), a machine learning methodology suited for sequential data, on player data from the mobile video game My Singing Monsters. Since this data comes in as a stream of events, RNNs are a natural solution for analyzing this data with minimal preprocessing. We apply RNNs to monitor and forecast game metrics, predict player conversion, estimate lifetime player value, and cluster player behaviours. In each case, we discuss why the results are interesting, how the trained models can be applied in a business setting, and how the preliminary work can serve ...


Baseline Assisted Classification Of Heart Rate Variability, Elham Harirpoush Jun 2018

Baseline Assisted Classification Of Heart Rate Variability, Elham Harirpoush

Electronic Thesis and Dissertation Repository

Recently, among various analysis methods of physiological signals, automatic analysis of Electrocardiogram (ECG) signals, especially heart rate variability (HRV) has received significant attention in the field of machine learning. Heart rate variability is an important indicator of health prediction and it is applicable to various fields of scientific research. Heart rate variability is based on measuring the differences in time between consecutive heartbeats (also known as RR interval), and the most common measuring techniques are divided into the time domain and frequency domain. In this research study, a classifier based on analysis of HRV signal is developed to classify different ...


Classification With Large Sparse Datasets: Convergence Analysis And Scalable Algorithms, Xiang Li Jul 2017

Classification With Large Sparse Datasets: Convergence Analysis And Scalable Algorithms, Xiang Li

Electronic Thesis and Dissertation Repository

Large and sparse datasets, such as user ratings over a large collection of items, are common in the big data era. Many applications need to classify the users or items based on the high-dimensional and sparse data vectors, e.g., to predict the profitability of a product or the age group of a user, etc. Linear classifiers are popular choices for classifying such datasets because of their efficiency. In order to classify the large sparse data more effectively, the following important questions need to be answered.

1. Sparse data and convergence behavior. How different properties of a dataset, such as ...


Improving Long Term Stock Market Prediction With Text Analysis, Tanner A. Bohn Apr 2017

Improving Long Term Stock Market Prediction With Text Analysis, Tanner A. Bohn

Electronic Thesis and Dissertation Repository

The task of forecasting stock performance is well studied with clear monetary motivations for those wishing to invest. A large amount of research in the area of stock performance prediction has already been done, and multiple existing results have shown that data derived from textual sources related to the stock market can be successfully used towards forecasting. These existing approaches have mostly focused on short term forecasting, used relatively simple sentiment analysis techniques, or had little data available. In this thesis, we prepare over ten years worth of stock data and propose a solution which combines features from textual yearly ...


Investigating Citation Linkage Between Research Articles, Kokou Hospice Houngbo Apr 2017

Investigating Citation Linkage Between Research Articles, Kokou Hospice Houngbo

Electronic Thesis and Dissertation Repository

In recent years, there has been a dramatic increase in scientific publications across the globe. To help navigate this overabundance of information, methods have been devised to find papers with related content, but they are lacking in the ability to provide specific information that a researcher may need without having to read hundreds of linked papers. The search and browsing capabilities of online domain specific scientific repositories are limited to finding a paper citing other papers, but do not point to the specific text that is being cited. Providing this capability to the research community will be beneficial in terms ...


Using Machine Learning To Predict Chemotherapy Response In Cell Lines And Patients Based On Genetic Expression, Dimo Angelov Mar 2017

Using Machine Learning To Predict Chemotherapy Response In Cell Lines And Patients Based On Genetic Expression, Dimo Angelov

Electronic Thesis and Dissertation Repository

The goal of this thesis was to examine different machine learning techniques for predicting chemotherapy response in cell lines and patients based on genetic expression. After trying regression, multi-class classification techniques and binary classification it was concluded that binary classification was the best method for training models due to the limited size of available cell line data. We found support vector machine classifiers trained on cell line data were easier to use and produced better results compared to neural networks. Sequential backward feature selection was able to select genes for the models that produced good results, however the greedy algorithm ...


An Exercise And Sports Equipment Recognition System, Siddarth Kalra May 2016

An Exercise And Sports Equipment Recognition System, Siddarth Kalra

Electronic Thesis and Dissertation Repository

Most mobile health management applications today require manual input or use sensors like the accelerometer or GPS to record user data. The onboard camera remains underused. We propose an Exercise and Sports Equipment Recognition System (ESRS) that can recognize physical activity equipment from raw image data. This system can be integrated with mobile phones to allow the camera to become a primary input device for recording physical activity. We employ a deep convolutional neural network to train models capable of recognizing 14 different equipment categories. Furthermore, we propose a preprocessing scheme that uses color normalization and denoising techniques to improve ...


Energy Forecasting For Event Venues: Big Data And Prediction Accuracy, Katarina Grolinger, Alexandra L'Heureux, Miriam Am Capretz, Luke Seewald Dec 2015

Energy Forecasting For Event Venues: Big Data And Prediction Accuracy, Katarina Grolinger, Alexandra L'Heureux, Miriam Am Capretz, Luke Seewald

Electrical and Computer Engineering Publications

Advances in sensor technologies and the proliferation of smart meters have resulted in an explosion of energy-related data sets. These Big Data have created opportunities for development of new energy services and a promise of better energy management and conservation. Sensor-based energy forecasting has been researched in the context of office buildings, schools, and residential buildings. This paper investigates sensor-based forecasting in the context of event-organizing venues, which present an especially difficult scenario due to large variations in consumption caused by the hosted events. Moreover, the significance of the data set size, specifically the impact of temporal granularity, on energy ...


Energy Cost Forecasting For Event Venues, Katarina Grolinger, Andrea Zagar, Miriam Am Capretz, Luke Seewald Jan 2015

Energy Cost Forecasting For Event Venues, Katarina Grolinger, Andrea Zagar, Miriam Am Capretz, Luke Seewald

Electrical and Computer Engineering Publications

Electricity price, consumption, and demand forecasting has been a topic of research interest for a long time. The proliferation of smart meters has created new opportunities in energy prediction. This paper investigates energy cost forecasting in the context of entertainment event-organizing venues, which poses significant difficulty due to fluctuations in energy demand and wholesale electricity prices. The objective is to predict the overall cost of energy consumed during an entertainment event. Predictions are carried out separately for each event category and feature selection is used to select the most effective combination of event attributes for each category. Three machine learning ...


Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis Aug 2014

Automated Image Interpretation For Science Autonomy In Robotic Planetary Exploration, Raymond Francis

Electronic Thesis and Dissertation Repository

Advances in the capabilities of robotic planetary exploration missions have increased the wealth of scientific data they produce, presenting challenges for mission science and operations imposed by the limits of interplanetary radio communications. These data budget pressures can be relieved by increased robotic autonomy, both for onboard operations tasks and for decision- making in response to science data.

This thesis presents new techniques in automated image interpretation for natural scenes of relevance to planetary science and exploration, and elaborates autonomy scenarios under which they could be used to extend the reach and performance of exploration missions on planetary surfaces.

Two ...


A New Web Search Engine With Learning Hierarchy, Da Kuang Aug 2012

A New Web Search Engine With Learning Hierarchy, Da Kuang

Electronic Thesis and Dissertation Repository

Most of the existing web search engines (such as Google and Bing) are in the form of keyword-based search. Typically, after the user issues a query with the keywords, the search engine will return a flat list of results. When the query issued by the user is related to a topic, only the keyword matching may not accurately retrieve the whole set of webpages in that topic. On the other hand, there exists another type of search system, particularly in e-Commerce web- sites, where the user can search in the categories of different faceted hierarchies (e.g., product types and ...