Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Machine learning

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 512

Full-Text Articles in Physical Sciences and Mathematics

Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan Sep 2019

Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan

Agronomy Publications

Nitrogen (N) fertilizer recommendation tools could be improved for estimating corn (Zea mays L.) N needs by incorporating site-specific soil and weather information. However, an evaluation of analytical methods is needed to determine the success of incorporating this information. The objectives of this research were to evaluate statistical and machine learning (ML) algorithms for utilizing soil and weather information for improving corn N recommendation tools. Eight algorithms [stepwise, ridge regression, least absolute shrinkage and selection operator (Lasso), elastic net regression, principal component regression (PCR), partial least squares regression (PLSR), decision tree, and random forest] were evaluated using a dataset containing ...


Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan Aug 2019

Machine Learning In Support Of Electric Distribution Asset Failure Prediction, Robert D. Flamenbaum, Thomas Pompo, Christopher Havenstein, Jade Thiemsuwan

SMU Data Science Review

In this paper, we present novel approaches to predicting as- set failure in the electric distribution system. Failures in overhead power lines and their associated equipment in particular, pose significant finan- cial and environmental threats to electric utilities. Electric device failure furthermore poses a burden on customers and can pose serious risk to life and livelihood. Working with asset data acquired from an electric utility in Southern California, and incorporating environmental and geospatial data from around the region, we applied a Random Forest methodology to predict which overhead distribution lines are most vulnerable to fail- ure. Our results provide evidence ...


Classification With Measurement Error In Covariates Or Response, With Application To Prostate Cancer Imaging Study, Kexin Luo Aug 2019

Classification With Measurement Error In Covariates Or Response, With Application To Prostate Cancer Imaging Study, Kexin Luo

Electronic Thesis and Dissertation Repository

The research is motivated by the prostate cancer imaging study conducted at the University of Western Ontario to classify cancer status using multiple in-vivo images. The prostate cancer histological image and the in-vivo images are subject to misalignment in the co-registration procedure, which can be viewed as measurement error in covariates or response. We investigate methods to correct this problem.

The first proposed method corrects the predicted class probability when the data has misclassified labels. The correction equation is derived from the relationship between the true response and the error-prone response. The probability for the observed class label is adjusted ...


Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan Aug 2019

Statistical And Machine Learning Methods Evaluated For Incorporating Soil And Weather Into Corn Nitrogen Recommendations, Curtis J. Ransom, Newell R. Kitchen, James J. Camberato, Paul R. Carter, Richard B. Ferguson, Fabián G. Fernández, David W. Franzen, Carrie A. M. Laboski, D. Brenton Myers, Emerson D. Nafziger, John E. Sawyer, John F. Shanahan

John E. Sawyer

Nitrogen (N) fertilizer recommendation tools could be improved for estimating corn (Zea mays L.) N needs by incorporating site-specific soil and weather information. However, an evaluation of analytical methods is needed to determine the success of incorporating this information. The objectives of this research were to evaluate statistical and machine learning (ML) algorithms for utilizing soil and weather information for improving corn N recommendation tools. Eight algorithms [stepwise, ridge regression, least absolute shrinkage and selection operator (Lasso), elastic net regression, principal component regression (PCR), partial least squares regression (PLSR), decision tree, and random forest] were evaluated using a dataset containing ...


The Importance Of Landscape Position Information And Elevation Uncertainty For Barrier Island Habitat Mapping And Modeling, Nicholas Matthew Enwright Aug 2019

The Importance Of Landscape Position Information And Elevation Uncertainty For Barrier Island Habitat Mapping And Modeling, Nicholas Matthew Enwright

LSU Doctoral Dissertations

Barrier islands provide important ecosystem services, including storm protection and erosion control to the mainland, habitat for fish and wildlife, and tourism. As a result, natural resource managers are concerned with monitoring changes to these islands and modeling future states of these environments. Landscape position, such as elevation and distance from shore, influences habitat coverage on barrier islands by regulating exposure to abiotic factors, including waves, tides, and salt spray. Geographers commonly use aerial topographic lidar data for extracting landscape position information. However, researchers rarely consider lidar elevation uncertainty when using automated processes for extracting elevation-dependent habitats from lidar data ...


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Student Research Projects, Dissertations, and Theses - Chemistry Department

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get ...


Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher Jul 2019

Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher

Christof Teuscher

In machine learning research, adversarial examples are normal inputs to a classifier that have been specifically perturbed to cause the model to misclassify the input. These perturbations rarely affect the human readability of an input, even though the model’s output is drastically different. Recent work has demonstrated that image-classifying deep neural networks (DNNs) can be reliably fooled with the modification of a single pixel in the input image, without knowledge of a DNN’s internal parameters. This “one-pixel attack” utilizes an iterative evolutionary optimizer known as differential evolution (DE) to find the most effective pixel to perturb, via the ...


Predicting Switch-Like Behavior In Proteins Using Logistic Regression On Sequence-Based Descriptors, Benjamin Strauss Jul 2019

Predicting Switch-Like Behavior In Proteins Using Logistic Regression On Sequence-Based Descriptors, Benjamin Strauss

Master's Projects

Ligands can bind at specific protein locations, inducing conformational changes such as those involving secondary structure. Identifying these possible switches from sequence, including homology, is an important ongoing area of research. We attempt to predict possible secondary structure switches from sequence in proteins using machine learning, specifically a logistic regression approach with 48 N-acetyltransferases as our learning set and 5 sirtuins as our test set. Validated residue binary assignments of 0 (no change in secondary structure) and 1 (change in secondary structure) were determined (DSSP) from 3D X-ray structures for sets of virtually identical chains crystallized under different conditions. Our ...


Case-Specific Random Forests For Big Data Prediction, Joshua Zimmerman, Dan Nettleton Jul 2019

Case-Specific Random Forests For Big Data Prediction, Joshua Zimmerman, Dan Nettleton

Dan Nettleton

Some training datasets may be too large for storage on a single computer. Such datasets may be partitioned and stored on separate computers connected in a parallel computing environment. To predict the response associated with a specific target case when training data are partitioned, we propose a method for finding the training cases within each partition that are most relevant for predicting the response of a target case of interest. These most relevant training cases from each partition can be combined into a single dataset, which can be a subset of the entire training dataset that is small enough for ...


What Do Developers Ask About Ml Libraries? A Large-Scale Study Using Stack Overflow, Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, Hridesh Rajan Jul 2019

What Do Developers Ask About Ml Libraries? A Large-Scale Study Using Stack Overflow, Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, Hridesh Rajan

Hridesh Rajan

Modern software systems are increasingly including machine learning (ML) as an integral component. However, we do not yet understand the difficulties faced by software developers when learning about ML libraries and using them within their systems. To that end, this work reports on a detailed (manual) examination of 3,243 highly-rated Q&A posts related to ten ML libraries, namely Tensorflow, Keras, scikit-learn, Weka, Caffe, Theano, MLlib, Torch, Mahout, and H2O, on Stack Overflow, a popular online technical Q&A forum. We classify these questions into seven typical stages of an ML pipeline to understand the correlation between the library ...


Automated Bioacoustics: Methods In Ecology And Conservation And Their Potential For Animal Welfare Monitoring, Michael P. Mcloughlin, Rebecca Stewart, Alan G. Mcelligott Jul 2019

Automated Bioacoustics: Methods In Ecology And Conservation And Their Potential For Animal Welfare Monitoring, Michael P. Mcloughlin, Rebecca Stewart, Alan G. Mcelligott

Alan G. McElligott, Ph.D.

Vocalizations carry emotional, physiological and individual information. This suggests that they may serve as potentially useful indicators for inferring animal welfare. At the same time, automated methods for analysing and classifying sound have developed rapidly, particularly in the fields of ecology, conservation and sound scene classification. These methods are already used to automatically classify animal vocalizations, for example, in identifying animal species and estimating numbers of individuals. Despite this potential, they have not yet found widespread application in animal welfare monitoring. In this review, we first discuss current trends in sound analysis for ecology, conservation and sound classification. Following this ...


Discovery Of Topological Constraints On Spatial Object Classes Using A Refined Topological Model, Ivan Majic, Elham Naghizade, Stephan Winter, Martin Tomko Jun 2019

Discovery Of Topological Constraints On Spatial Object Classes Using A Refined Topological Model, Ivan Majic, Elham Naghizade, Stephan Winter, Martin Tomko

Journal of Spatial Information Science

In a typical data collection process, a surveyed spatial object is annotated upon creation, and is classified based on its attributes. This annotation can also be guided by textual definitions of objects. However, interpretations of such definitions may differ among people, and thus result in subjective and inconsistent classification of objects. This problem becomes even more pronounced if the cultural and linguistic differences are considered. As a solution, this paper investigates the role of topology as the defining characteristic of a class of spatial objects. We propose a data mining approach based on frequent itemset mining to learn patterns in ...


What Do Developers Ask About Ml Libraries? A Large-Scale Study Using Stack Overflow, Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, Hridesh Rajan Jun 2019

What Do Developers Ask About Ml Libraries? A Large-Scale Study Using Stack Overflow, Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, Hridesh Rajan

Computer Science Publications

Modern software systems are increasingly including machine learning (ML) as an integral component. However, we do not yet understand the difficulties faced by software developers when learning about ML libraries and using them within their systems. To that end, this work reports on a detailed (manual) examination of 3,243 highly-rated Q&A posts related to ten ML libraries, namely Tensorflow, Keras, scikit-learn, Weka, Caffe, Theano, MLlib, Torch, Mahout, and H2O, on Stack Overflow, a popular online technical Q&A forum. We classify these questions into seven typical stages of an ML pipeline to understand the correlation between the library ...


Automated Bioacoustics: Methods In Ecology And Conservation And Their Potential For Animal Welfare Monitoring, Michael P. Mcloughlin, Rebecca Stewart, Alan G. Mcelligott Jun 2019

Automated Bioacoustics: Methods In Ecology And Conservation And Their Potential For Animal Welfare Monitoring, Michael P. Mcloughlin, Rebecca Stewart, Alan G. Mcelligott

Conservation Biology and Animal Welfare Collection

Vocalizations carry emotional, physiological and individual information. This suggests that they may serve as potentially useful indicators for inferring animal welfare. At the same time, automated methods for analysing and classifying sound have developed rapidly, particularly in the fields of ecology, conservation and sound scene classification. These methods are already used to automatically classify animal vocalizations, for example, in identifying animal species and estimating numbers of individuals. Despite this potential, they have not yet found widespread application in animal welfare monitoring. In this review, we first discuss current trends in sound analysis for ecology, conservation and sound classification. Following this ...


Boa Meets Python: A Boa Dataset Of Data Science Software In Python Language, Sumon Biswas, Md Johirul Islam, Yijia Huang, Hridesh Rajan Jun 2019

Boa Meets Python: A Boa Dataset Of Data Science Software In Python Language, Sumon Biswas, Md Johirul Islam, Yijia Huang, Hridesh Rajan

Hridesh Rajan

The popularity of Python programming language has surged in recent years due to its increasing usage in Data Science. The availability of Python repositories in Github presents an opportunity for mining software repository research, e.g., suggesting the best practices in developing Data Science applications, identifying bug-patterns, recommending code enhancements, etc. To enable this research, we have created a new dataset that includes 1,558 mature Github projects that develop Python software for Data Science tasks. By analyzing the metadata and code, we have included the projects in our dataset which use a diverse set of machine learning libraries and ...


Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga Jun 2019

Field Drilling Data Cleaning And Preparation For Data Analytics Applications, Daniel Cardoso Braga

LSU Master's Theses

Throughout the history of oil well drilling, service providers have been continuously striving to improve performance and reduce total drilling costs to operating companies. Despite constant improvement in tools, products, and processes, data science has not played a large part in oil well drilling. With the implementation of data science in the energy sector, companies have come to see significant value in efficiently processing the massive amounts of data produced by the multitude of internet of thing (IOT) sensors at the rig. The scope of this project is to combine academia and industry experience to analyze data from 13 different ...


Exploring The Dynamics Of Scientific Research, Shilpa Lakhanpal Jun 2019

Exploring The Dynamics Of Scientific Research, Shilpa Lakhanpal

Dissertations

Scientific research papers present the research endeavors of numerous scientists around the world, and are documented across multitudes of technical conference proceedings, and other such publications. Given the plethora of such research data, if we could automate the extraction of key interesting areas of research, and provide access to this new information, it would make literature searches incredibly easier for researchers. This in turn could be very useful for them in furthering their research agenda. With this goal in mind, we have endeavored to provide such solutions through our research. Specifically, the focus of our research is to design, analyze ...


Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji Jun 2019

Exploring The Behavior Repertoire Of A Wireless Vibrationally Actuated Tensegrity Robot, Zongliang Ji

Honors Theses

Soft robotics is an emerging field of research due to its potential to explore and operate in unstructured, rugged, and dynamic environments. However, the properties that make soft robots compelling also make them difficult to robustly control. Here at Union, we developed the world’s first wireless soft tensegrity robot. The goal of my thesis is to explore effective and efficient methods to explore the diverse behavior our tensegrity robot. We will achieve that by applying state-of-art machine learning technique and a novelty search algorithm.


A Study Of Machine Learning And Deep Learning Models For Solving Medical Imaging Problems, Fadi G. Farhat May 2019

A Study Of Machine Learning And Deep Learning Models For Solving Medical Imaging Problems, Fadi G. Farhat

Theses

Application of machine learning and deep learning methods on medical imaging aims to create systems that can help in the diagnosis of disease and the automation of analyzing medical images in order to facilitate treatment planning. Deep learning methods do well in image recognition, but medical images present unique challenges. The lack of large amounts of data, the image size, and the high class-imbalance in most datasets, makes training a machine learning model to recognize a particular pattern that is typically present only in case images a formidable task.

Experiments are conducted to classify breast cancer images as healthy or ...


A Comparative Study Of Russian Trolls Using Several Machine Learning Models On Twitter Data, Kannan Neten Dharan Kannan Neten Dharan May 2019

A Comparative Study Of Russian Trolls Using Several Machine Learning Models On Twitter Data, Kannan Neten Dharan Kannan Neten Dharan

Theses

Ever since Russian trolls have been brought into light, their interference in the 2016 US Presidential elections has been monitored and studied thoroughly. These Russian trolls have fake accounts registered on several major social media sites to influence public opinions. Our work involves trying to discover patterns in these tweets and classifying them by using different machine learning approaches such as Support Vector Machines, Word2vec and neural network models, and then creating a benchmark to compare all the different models. Two machine learning models are developed for this purpose. The first one is used to classify any given specific tweet ...


Using Computer Vision To Quantify Coral Reef Biodiversity, Niket Bhodia May 2019

Using Computer Vision To Quantify Coral Reef Biodiversity, Niket Bhodia

Master's Projects

The preservation of the world’s oceans is crucial to human survival on this planet, yet we know too little to begin to understand anthropogenic impacts on marine life. This is especially true for coral reefs, which are the most diverse marine habitat per unit area (if not overall) as well as the most sensitive. To address this gap in knowledge, simple field devices called autonomous reef monitoring structures (ARMS) have been developed, which provide standardized samples of life from these complex ecosystems. ARMS have now become successful to the point that the amount of data collected through them has ...


Sensor - Based Human Activity Recognition Using Smartphones, Mustafa Badshah May 2019

Sensor - Based Human Activity Recognition Using Smartphones, Mustafa Badshah

Master's Projects

It is a significant technical and computational task to provide precise information regarding the activity performed by a human and find patterns of their behavior. Countless applications can be molded and various problems in domains of virtual reality, health and medical, entertainment and security can be solved with advancements in human activity recognition (HAR) systems. HAR is an active field for research for more than a decade, but certain aspects need to be addressed to improve the system and revolutionize the way humans interact with smartphones. This research provides a holistic view of human activity recognition system architecture and discusses ...


Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja May 2019

Depressiongnn: Depression Prediction Using Graph Neural Network On Smartphone And Wearable Sensors, Param Bidja

Honors Scholar Theses

Depression prediction is a complicated classification problem because depression diagnosis involves many different social, physical, and mental signals. Traditional classification algorithms can only reach an accuracy of no more than 70% given the complexities of depression. However, a novel approach using Graph Neural Networks (GNN) can be used to reach over 80% accuracy, if a graph can represent the depression data set to capture differentiating features. Building such a graph requires 1) the definition of node features, which must be highly correlated with depression, and 2) the definition for edge metrics, which must also be highly correlated with depression. In ...


Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang May 2019

Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang

Physics & Astronomy Faculty Publications

A computational methodology based on ab initio evolutionary algorithms and spin-polarized density functional theory was developed to predict two-dimensional magnetic materials. Its application to a model system borophene reveals an unexpected rich magnetism and polymorphism. A metastable borophene with nonzero thickness is an antiferromagnetic semiconductor from first-principles calculations, and can be further tuned into a half-metal by finite electron doping. In this borophene, the buckling and coupling among three atomic layers are not only responsible for magnetism, but also result in an out-of-plane negative Poisson's ratio under uniaxial tension, making it the first elemental material possessing auxetic and magnetic ...


Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher May 2019

Exploring And Expanding The One-Pixel Attack, Umairullah Khan, Walt Woods, Christof Teuscher

Student Research Symposium

In machine learning research, adversarial examples are normal inputs to a classifier that have been specifically perturbed to cause the model to misclassify the input. These perturbations rarely affect the human readability of an input, even though the model’s output is drastically different. Recent work has demonstrated that image-classifying deep neural networks (DNNs) can be reliably fooled with the modification of a single pixel in the input image, without knowledge of a DNN’s internal parameters. This “one-pixel attack” utilizes an iterative evolutionary optimizer known as differential evolution (DE) to find the most effective pixel to perturb, via the ...


Every Data Point Counts: Political Elections In The Age Of Digital Analytics, Julian Kehle, Samir Naimi May 2019

Every Data Point Counts: Political Elections In The Age Of Digital Analytics, Julian Kehle, Samir Naimi

Honors Thesis

Synthesizing the investigative research and cautionary messages from experts in the fields of technology, political science, and behavioral science, this project explores the ways in which digital analytics has begun to influence the American political arena. Historically, political parties have constructed systems to target voters and win elections. However, rapid changes in the field of technology (such as big data, artificial intelligence, and the prevalence of social media) threaten to undermine the integrity of elections themselves. Future political campaigns will utilize profiling to micro-target individuals in order to manipulate and persuade them with hyper-personalized political content. Most dangerously, the average ...


Distilling Managerial Insights And Lessons From Ai Projects At Singapore's Changi Airport (Part 2), Steve Lee, Steven Miller May 2019

Distilling Managerial Insights And Lessons From Ai Projects At Singapore's Changi Airport (Part 2), Steve Lee, Steven Miller

Asian Management Insights

Since 2017, Changi Airport group (CAG) has initiated a host of pilot projects that use connective and intelligent technologies to enable its move towards digital transformation and SMART Airport Vision. This has resulted in a first wave of deployment of AI and Machine Learning-enabled applications across various functions that can better sense, analyse, predict, and interact with people.


Ai Gets Real At Singapore's Changi Airport (Part 1), Steve Lee, Steven Miller May 2019

Ai Gets Real At Singapore's Changi Airport (Part 1), Steve Lee, Steven Miller

Asian Management Insights

Ranked as the best airport for seven consecutive years, Singapore’s Changi Airport is lauded the world over for the efficient, safe, pleasurable and seamless service it offers the millions of passengers that pass through its facilities annually. Much of Changi Airport’s success can be attributed to the organisation’s customer-oriented business focus and deeply embedded culture of service excellence, combined with a host of advanced technologies operating invisibly in the background. The framework for this technology enablement is Changi Airport Group’s (CAG’s) SMART Airport Vision—an enterprise-wide approach to connective technologies that leverages sensors, data fusion ...


Boa Meets Python: A Boa Dataset Of Data Science Software In Python Language, Sumon Biswas, Md Johirul Islam, Yijia Huang, Hridesh Rajan May 2019

Boa Meets Python: A Boa Dataset Of Data Science Software In Python Language, Sumon Biswas, Md Johirul Islam, Yijia Huang, Hridesh Rajan

Computer Science Publications

The popularity of Python programming language has surged in recent years due to its increasing usage in Data Science. The availability of Python repositories in Github presents an opportunity for mining software repository research, e.g., suggesting the best practices in developing Data Science applications, identifying bug-patterns, recommending code enhancements, etc. To enable this research, we have created a new dataset that includes 1,558 mature Github projects that develop Python software for Data Science tasks. By analyzing the metadata and code, we have included the projects in our dataset which use a diverse set of machine learning libraries and ...


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis ...