Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Machine learning

Applied Mathematics

Institution
Publication Year
Publication
Publication Type

Articles 31 - 42 of 42

Full-Text Articles in Physical Sciences and Mathematics

Comparing Predictive Performance Of Statistical Learning Models On Medical Data, Francis Biney Jan 2020

Comparing Predictive Performance Of Statistical Learning Models On Medical Data, Francis Biney

Open Access Theses & Dissertations

This work investigates the predictive performance of 10 Machine learning models on three medical data including Breast cancer, Heart disease and Prostate cancer. Furthermore, we use the models to identify risk factors that contribute significantly to these diseases.

The models considered include; Logistic regression with L1 and L_2 penalties, Principal component logistic regression(PCR-LR), Partial least squares logistic regression(PLS-LR), Multivariate adaptive regression splines(MARS), Support vector machine with Radial Basis Kernel (SVM-RBK), Random Forest(RF), Gradient Boosting Machines(GBM), Elastic Net (Enet) and Feedforward Neural Network(FFNN). The models were grouped according to their similarities and learning style; i) Linear regularized models: LR-Lasso, LR-Ridge and …


Adaptive Feature Engineering Modeling For Ultrasound Image Classification For Decision Support, Hatwib Mugasa Oct 2019

Adaptive Feature Engineering Modeling For Ultrasound Image Classification For Decision Support, Hatwib Mugasa

Doctoral Dissertations

Ultrasonography is considered a relatively safe option for the diagnosis of benign and malignant cancer lesions due to the low-energy sound waves used. However, the visual interpretation of the ultrasound images is time-consuming and usually has high false alerts due to speckle noise. Improved methods of collection image-based data have been proposed to reduce noise in the images; however, this has proved not to solve the problem due to the complex nature of images and the exponential growth of biomedical datasets. Secondly, the target class in real-world biomedical datasets, that is the focus of interest of a biopsy, is usually …


Forecasting Crashes, Credit Card Default, And Imputation Analysis On Missing Values By The Use Of Neural Networks, Jazmin Quezada Jan 2019

Forecasting Crashes, Credit Card Default, And Imputation Analysis On Missing Values By The Use Of Neural Networks, Jazmin Quezada

Open Access Theses & Dissertations

A neural network is a system of hardware and/or software patterned after the operation of neurons in the human brain. Neural networks,- also called Artificial Neural Networks - are a variety of deep learning technology, which also falls under the umbrella of artificial intelligence, or AI. Recent studies shows that Artificial Neural Network has the highest coefficient of determination (i.e. measure to assess how well a model explains and predicts future outcomes.) in comparison to the K-nearest neighbor classifiers, logistic regression, discriminant analysis, naive Bayesian classifier, and classification trees. In this work, the theoretical description of the neural network methodology …


Optimization Methods For Learning Graph-Structured Sparse Models, Baojian Zhou Jan 2019

Optimization Methods For Learning Graph-Structured Sparse Models, Baojian Zhou

Legacy Theses & Dissertations (2009 - 2024)

Learning graph-structured sparse models has recently received significant attention thanks to their broad applicability to many important real-world problems. However, such models, of more effective and stronger interpretability compared with their counterparts, are difficult to learn due to optimization challenges. This thesis presents optimization algorithms for learning graph-structured sparse models under three different problem settings. Firstly, under the batch learning setting, we develop methods that can be applied to different objective functions that enjoy linear convergence guarantees up to constant errors. They can effectively optimize the statistical score functions in the task of subgraph detection; Secondly, under stochastic learning setting, …


Recurrent Neural Networks And Their Applications To Rna Secondary Structure Inference, Devin Willmott Jan 2018

Recurrent Neural Networks And Their Applications To Rna Secondary Structure Inference, Devin Willmott

Theses and Dissertations--Mathematics

Recurrent neural networks (RNNs) are state of the art sequential machine learning tools, but have difficulty learning sequences with long-range dependencies due to the exponential growth or decay of gradients backpropagated through the RNN. Some methods overcome this problem by modifying the standard RNN architecure to force the recurrent weight matrix W to remain orthogonal throughout training. The first half of this thesis presents a novel orthogonal RNN architecture that enforces orthogonality of W by parametrizing with a skew-symmetric matrix via the Cayley transform. We present rules for backpropagation through the Cayley transform, show how to deal with the Cayley …


Temporal Feature Selection With Symbolic Regression, Christopher Winter Fusting Jan 2017

Temporal Feature Selection With Symbolic Regression, Christopher Winter Fusting

Graduate College Dissertations and Theses

Building and discovering useful features when constructing machine learning models is the central task for the machine learning practitioner. Good features are useful not only in increasing the predictive power of a model but also in illuminating the underlying drivers of a target variable. In this research we propose a novel feature learning technique in which Symbolic regression is endowed with a ``Range Terminal'' that allows it to explore functions of the aggregate of variables over time. We test the Range Terminal on a synthetic data set and a real world data in which we predict seasonal greenness using satellite …


Prediction And Optimal Scheduling Of Advertisements In Linear Television, Mark J. Panaggio, Pak-Wing Fok, Ghan S. Bhatt, Simon Burhoe, Michael Capps, Christina J. Edholm, Fadoua El Moustaid, Tegan Emerson, Star-Lena Estock, Nathan Gold, Ryan Halabi, Madelyn Houser, Peter R. Kramer, Hsuan-Wei Lee, Qingxia Li, Weiqiang Li, Dan Lu, Yuzhou Qian, Louis F. Rossi, Deborah Shutt, Vicky Chuqiao Yang, Yingxiang Zhou Aug 2016

Prediction And Optimal Scheduling Of Advertisements In Linear Television, Mark J. Panaggio, Pak-Wing Fok, Ghan S. Bhatt, Simon Burhoe, Michael Capps, Christina J. Edholm, Fadoua El Moustaid, Tegan Emerson, Star-Lena Estock, Nathan Gold, Ryan Halabi, Madelyn Houser, Peter R. Kramer, Hsuan-Wei Lee, Qingxia Li, Weiqiang Li, Dan Lu, Yuzhou Qian, Louis F. Rossi, Deborah Shutt, Vicky Chuqiao Yang, Yingxiang Zhou

Mathematical Sciences Faculty Research

Advertising is a crucial component of marketing and an important way for companies to raise awareness of goods and services in the marketplace. Advertising campaigns are designed to convey a marketing image or message to an audience of potential consumers and television commercials can be an effective way of transmitting these messages to a large audience. In order to meet the requirements for a typical advertising order, television content providers must provide advertisers with a predetermined number of "impressions" in the target demographic. However, because the number of impressions for a given program is not known a priori and because …


A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci May 2016

A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci

McKelvey School of Engineering Theses & Dissertations

In a world where data rates are growing faster than computing power, algorithmic acceleration based on developments in mathematical optimization plays a crucial role in narrowing the gap between the two. As the scale of optimization problems in many fields is getting larger, we need faster optimization methods that not only work well in theory, but also work well in practice by exploiting underlying state-of-the-art computing technology.

In this document, we introduce a unified framework of large-scale convex optimization using Jensen surrogates, an iterative optimization method that has been used in different fields since the 1970s. After this general treatment, …


Data Driven Sample Generator Model With Application To Classification, Alvaro Emilio Ulloa Cerna May 2016

Data Driven Sample Generator Model With Application To Classification, Alvaro Emilio Ulloa Cerna

Mathematics & Statistics ETDs

Despite the rapidly growing interest, progress in the study of relations between physiological abnormalities and mental disorders is hampered by complexity of the human brain and high costs of data collection. The complexity can be captured by machine learning approaches, but they still may require significant amounts of data. In this thesis, we seek to mitigate the latter challenge by developing a data driven sample generator model for the generation of synthetic realistic training data. Our method greatly improves generalization in classification of schizophrenia patients and healthy controls from their structural magnetic resonance images. A feed forward neural network trained …


Singular Value Computation And Subspace Clustering, Qiao Liang Jan 2015

Singular Value Computation And Subspace Clustering, Qiao Liang

Theses and Dissertations--Mathematics

In this dissertation we discuss two problems. In the first part, we consider the problem of computing a few extreme eigenvalues of a symmetric definite generalized eigenvalue problem or a few extreme singular values of a large and sparse matrix. The standard method of choice of computing a few extreme eigenvalues of a large symmetric matrix is the Lanczos or the implicitly restarted Lanczos method. These methods usually employ a shift-and-invert transformation to accelerate the speed of convergence, which is not practical for truly large problems. With this in mind, Golub and Ye proposes an inverse-free preconditioned Krylov subspace method, …


Convergence Of A Reinforcement Learning Algorithm In Continuous Domains, Stephen Carden Aug 2014

Convergence Of A Reinforcement Learning Algorithm In Continuous Domains, Stephen Carden

All Dissertations

In the field of Reinforcement Learning, Markov Decision Processes with a finite number of states and actions have been well studied, and there exist algorithms capable of producing a sequence of policies which converge to an optimal policy with probability one. Convergence guarantees for problems with continuous states also exist. Until recently, no online algorithm for continuous states and continuous actions has been proven to produce optimal policies. This Dissertation contains the results of research into reinforcement learning algorithms for problems in which both the state and action spaces are continuous. The problems to be solved are introduced formally as …


The Gaussian Radon Transform For Banach Spaces, Irina Holmes Jan 2014

The Gaussian Radon Transform For Banach Spaces, Irina Holmes

LSU Doctoral Dissertations

The classical Radon transform can be thought of as a way to obtain the density of an n-dimensional object from its (n-1)-dimensional sections in diff_x001B_erent directions. A generalization of this transform to infi_x001C_nite-dimensional spaces has the potential to allow one to obtain a function de_x001C_fined on an infi_x001C_nite-dimensional space from its conditional expectations. We work within a standard framework in in_x001C_finite-dimensional analysis, that of abstract Wiener spaces, developed by L. Gross. The main obstacle in infinite dimensions is the absence of a useful version of Lebesgue measure. To overcome this, we work with Gaussian measures. Specifically, we construct Gaussian measures …