Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Elastic Scattering

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Retrieval Of Target Structure Information From Laser-Induced Photoelectrons By Few-Cycle Bicircular Laser Fields, Van-Hung Hoang, Van-Hoang Le, C. D. Lin, Anh-Thu Le Mar 2017

Retrieval Of Target Structure Information From Laser-Induced Photoelectrons By Few-Cycle Bicircular Laser Fields, Van-Hung Hoang, Van-Hoang Le, C. D. Lin, Anh-Thu Le

Physics Faculty Research & Creative Works

By analyzing theoretical results from a numerical solution of the time-dependent Schrödinger equation for atoms in few-cycle bicircular laser pulses, we show that high-energy photoelectron momentum spectra can be used to extract accurate elastic scattering differential cross sections of the target ion with free electrons. We find that the retrieval range for a scattering angle with bicircular pulses is wider than with linearly polarized pulses, although the retrieval method has to be modified to account for different returning directions of the electron in the continuum. This result can be used to extend the range of applicability of ultrafast imaging techniques …


Laser-Induced Electron Diffraction For Probing Rare Gas Atoms, Junliang Xu, Cosmin I. Blaga, Anthony D. Dichiara, Emily Sistrunk, Kaikai Zhang, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin, Pierre Agostini, Louis F. Dimauro Dec 2012

Laser-Induced Electron Diffraction For Probing Rare Gas Atoms, Junliang Xu, Cosmin I. Blaga, Anthony D. Dichiara, Emily Sistrunk, Kaikai Zhang, Zhangjin Chen, Anh-Thu Le, Toru Morishita, C. D. Lin, Pierre Agostini, Louis F. Dimauro

Physics Faculty Research & Creative Works

Recently, using midinfrared laser-induced electron diffraction (LIED), snapshots of a vibrating diatomic molecule on a femtosecond time scale have been captured [C.I. Blaga et al., Nature (London) 483, 194 (2012)]. In this Letter, a comprehensive treatment for the atomic LIED response is reported, a critical step in generalizing this imaging method. Electron-ion differential cross sections (DCSs) of rare gas atoms are extracted from measured angular-resolved, high-energy electron momentum distributions generated by intense midinfrared lasers. Following strong-field ionization, the high-energy electrons result from elastic rescattering of a field-driven wave packet with the parent ion. For recollision energies [greater or equal] 100eV, …


Retrieval Of Electron-Atom Scattering Cross Sections From Laser-Induced Electron Rescattering Of Atomic Negative Ions In Intense Laser Fields, Xiaoxin Zhou, Zhangjin Chen, Toru Morishita, Anh-Thu Le, C. D. Lin May 2008

Retrieval Of Electron-Atom Scattering Cross Sections From Laser-Induced Electron Rescattering Of Atomic Negative Ions In Intense Laser Fields, Xiaoxin Zhou, Zhangjin Chen, Toru Morishita, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

We investigated the two-dimensional electron momentum distributions of atomic negative ions in an intense laser field by solving the time-dependent Schrödinger equation (TDSE) and using the first- and second-order strong-field approximations (SFAs). We showed that photoelectron energy spectra and low-energy photoelectron momentum distributions predicted from SFAs are in reasonable agreement with the solutions from the TDSE. More importantly, we showed that accurate electron-atom elastic scattering cross sections can be retrieved directly from high-energy electron momentum spectra of atomic negative ions in the laser field. This opens up the possibility of measuring electron-atom and electron-molecule scattering cross sections from the photodetachment …


Potential For Ultrafast Dynamic Chemical Imaging With Few-Cycle Infrared Lasers, Toru Morishita, Anh-Thu Le, Zhangjin Chen, C. D. Lin Feb 2008

Potential For Ultrafast Dynamic Chemical Imaging With Few-Cycle Infrared Lasers, Toru Morishita, Anh-Thu Le, Zhangjin Chen, C. D. Lin

Physics Faculty Research & Creative Works

We studied the photoelectron spectra generated by an intense few cycle infrared laser pulse. By focusing on the angular distributions of the back rescattered high energy photoelectrons, we show that accurate differential elastic scattering cross-sections of the target ion by free electrons can be extracted. Since the incident direction and the energy of the free electrons can be easily changed by manipulating the laser's polarization, intensity and wavelength, these extracted elastic scattering cross-sections, in combination with more advanced inversion algorithms, may be used to reconstruct the effective single-scattering potential of the molecule, thus opening up the possibility of using few-cycle …


Analysis Of Two-Dimensional High-Energy Photoelectron Momentum Distributions In The Single Ionization Of Atoms By Intense Laser Pulses, Zhangjin Chen, Toru Morishita, Anh-Thu Le, C. D. Lin Oct 2007

Analysis Of Two-Dimensional High-Energy Photoelectron Momentum Distributions In The Single Ionization Of Atoms By Intense Laser Pulses, Zhangjin Chen, Toru Morishita, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

We analyzed the two-dimensional (2D) electron momentum distributions of high-energy photoelectrons of atoms in an intense laser field using the second-order strong field approximation (SFA2). The SFA2 accounts for the rescattering of the returning electron with the target ion to first order and its validity is established by comparing with results obtained by solving the time-dependent Schrödinger equation for short pulses. By analyzing the SFA2 theory, we confirmed that the yield along the back rescattered ridge in the 2D momentum spectra can be interpreted as due to the elastic scattering in the backward directions by the returning electron wave packet. …