Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Atomic layer deposition

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 26 of 26

Full-Text Articles in Physical Sciences and Mathematics

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler Mar 2024

Effect Of Fabrication Parameters On The Ferroelectricity Of Hafnium Zirconium Oxide Films: A Statistical Study, Guillermo A. Salcedo, Ahmad E. Islam, Elizabeth Reichley, Michael Dietz, Christine M. Schubert Kabban, Kevin D. Leedy, Tyson C. Back, Weison Wang, Andrew Green, Timothy S. Wolfe, James M. Sattler

Faculty Publications

Ferroelectricity in hafnium zirconium oxide (Hf1−xZrxO2) and the factors that impact it have been a popular research topic since its discovery in 2011. Although the general trends are known, the interactions between fabrication parameters and their effect on the ferroelectricity of Hf1−xZrxO2 require further investigation. In this paper, we present a statistical study and a model that relates Zr concentration (x), film thickness (tf), and annealing temperature (Ta) with the remanent polarization (Pr) in tungsten (W)-capped Hf1−xZrxO2. …


Nonoxidative Dehydrogenation Of Propane Using Boron-Incorporated Silica-Supported Pt Sites Synthesized By Atomic Layer Deposition, Gokhan Çeli̇k Feb 2024

Nonoxidative Dehydrogenation Of Propane Using Boron-Incorporated Silica-Supported Pt Sites Synthesized By Atomic Layer Deposition, Gokhan Çeli̇k

Turkish Journal of Chemistry

Nonoxidative dehydrogenation of propane to propylene using Pt-based supported catalysts is an active research area in catalysis because catalyst attributes of Pt sites can be controlled by careful design of active sites. One way to achieve this is by the addition of a second metal that may impart a change in the electron density of active sites, which in turn affects catalytic performance. In this study, bimetallic Pt and B sites were deposited on powder SiO2 using atomic layer deposition (ALD). Boron was first deposited on SiO2 via half-cycle ALD using triisoproplyborate as the B source. Following calcination, Pt deposition …


Exploring Surface Silanization And Characterization Of Thin Films: From Surface Passivation To Microstructural Characterization Of Porous Silicon/Silica, And Exploratory Data Analysis Of X-Ray Photoelectron Spectroscopy Images, Behnam Moeini Jun 2023

Exploring Surface Silanization And Characterization Of Thin Films: From Surface Passivation To Microstructural Characterization Of Porous Silicon/Silica, And Exploratory Data Analysis Of X-Ray Photoelectron Spectroscopy Images, Behnam Moeini

Theses and Dissertations

Surface chemistry plays a key role in science and technology because materials interact with their environments through their surfaces. Understanding surface chemistry can help alter/improve the properties of materials. However, surface characterization and modification often require multiple characterization and synthesis techniques. Silicon/silica-based materials are technologically important, so studying their surface properties can enable future advancements. In this dissertation, I explore surface modification and characterization of different types of Si/SiO2 thin films, including silicon wafers, fused silica capillary columns, and oblique angle sputtered Si/SiO2 thin films. In Chapters 2-5, I first present a method to rapidly silanize silica surfaces using a …


Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied Aug 2022

Hierarchically Structured Photoelectrodes Via Atomic Layer Deposition, Justin Rowan Reed Demoulpied

Graduate Theses and Dissertations

In the search for a sustainable method to meet increasing energy needs, solar energy emerges as an underutilized, plentiful resource. Solar intermittency and requirements for transportation necessitate storing solar energy in the form of chemical bonds via artificial photosynthesis. Photoelectrochemical (PEC) water splitting generates hydrogen fuel from solar energy and water. A semiconducting material that successfully meets the complex requirements for building an industrially scalable PEC device has yet to emerge. This is leading to a reevaluation of materials previously overlooked within PEC research, mainly materials with limitations such as minimal charge carrier mobility and propensity to corrosion under illumination …


Atomic Layer Deposition And High Sensitivity-Low Energy Ion Scattering For The Determination Of The Surface Silanol Density On Glass And Unsupervised Exploratory Data Analysis With Summary Statistics And Other Methods, Tahereh Gholian Avval Jul 2022

Atomic Layer Deposition And High Sensitivity-Low Energy Ion Scattering For The Determination Of The Surface Silanol Density On Glass And Unsupervised Exploratory Data Analysis With Summary Statistics And Other Methods, Tahereh Gholian Avval

Theses and Dissertations

With the increasing importance of hand-held devices with touch displays, the need for flat panel displays (FPDs) will likely increase in the future. Glass is the most important substrate for FPD manufacturing, where both its bulk and surface properties are critical for its performance. Many properties of the glass used in FPDs are controlled by its surface chemistry. Surface hydroxyls are the most important functional groups on a glass surface, which control processes that occurs on oxide surfaces, including wetting, adhesion, electrostatic charging and discharge, and the rate of contamination. In this dissertation, I present a new approach for determining …


Review Of Current Reactive Force Field Potentials For Use In Simulating The Atomic Layer Deposition Of Alumina On Aluminum, Devon T. Romine Jan 2022

Review Of Current Reactive Force Field Potentials For Use In Simulating The Atomic Layer Deposition Of Alumina On Aluminum, Devon T. Romine

MSU Graduate Theses

Alumina has recently garnered quite a bit of attention for use as a tunnel barrier in Josephson tunnel junctions. The quality of the metal oxide layer in the Josephson tunnel junction is a key factor in its effectiveness. To optimize the deposition method of alumina, we need a deep understanding of the large-scale surface interactions that cannot be reached using ab initio molecular dynamics. In this study, I have compared two existing reactive force field (ReaxFF) parameters to determine their abilities to model the atomic layer deposition (ALD) of alumina on an aluminum surface. ReaxFF molecular dynamics was chosen because …


Applications Of A Combined Approach Of Kinetic Monte Carlo Simulations And Machine Learning To Model Atomic Layer Deposition (Ald) Of Metal Oxides, Emily Justus Jan 2022

Applications Of A Combined Approach Of Kinetic Monte Carlo Simulations And Machine Learning To Model Atomic Layer Deposition (Ald) Of Metal Oxides, Emily Justus

MSU Graduate Theses

Metal-oxides such as ZnO or Al2O3 synthesized through Atomic Layer Deposition (ALD) have been of great research interest as the candidate materials for ultra-thin tunnel barriers. In this study, I have applied a 3D on-lattice Kinetic Monte Carlo (kMC) code developed by Timo Weckman’s group to simulate the growth mechanisms of the tunnel barrier layer and to evaluate the role of various experimentally relevant factors in the ALD processes. I have systematically studied the effect of parameters such as the chamber pressure temperature, pulse, and purge times. The database generated from the kMC simulations was subsequently used …


The Design And Characterization Of Advanced Li Metal Anodes For Next-Generation Batteries, Keegan R. Adair Aug 2021

The Design And Characterization Of Advanced Li Metal Anodes For Next-Generation Batteries, Keegan R. Adair

Electronic Thesis and Dissertation Repository

Li metal batteries have been widely regarded as the next stage of energy storage technology, which is enabled by the low electrochemical potential (-3.04 V vs. the standard hydrogen electrode) and high specific capacity (3860 mAh g-1) of the Li metal anode. However, the implementation of Li metal anodes has been hindered by several issues including parasitic side reactions with electrolyte, large volume fluctuations, and dendrite formation which can cause short-circuits and safety issues. This thesis will cover some novel Li anode stabilization strategies while using advanced characterization techniques to provide critical information on the working mechanisms of …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness Dec 2020

Kinetic Monte Carlo Investigations Involving Atomic Layer Deposition Of Metal-Oxide Thinfilms, David Tyler Magness

MSU Graduate Theses

Atomic Layer Deposition is a method of manufacturing thin film materials. Metal-oxides such as zinc-oxide and aluminum-oxide are particularly interesting candidates for use in microelectronic devices such as tunnel junction barriers, transistors, Schottky diodes, and more. By adopting a 3D Kinetic Monte Carlo model capable of simulating ZnO deposition, the effect of parameters including deposition temperature, chamber pressure, and composition of the initial substrate at the beginning of deposition can be investigated. This code generates two random numbers: One is used to select a chemical reaction to occur from a list of all possible reactions and the second is used …


Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo Aug 2020

Heterostructure Of 2d Materials: Hfs2/Hfo2/Si, Christopher J. Robledo

MSU Graduate Theses

Heterostructures have been utilized in electronic devices for over 50 years with the proposal for the first heterostructure transistor in 1957. With the scaling of devices, it is necessary to create new heterostructures that will comply with Moore’s Law, as well as make devices faster and consume less power. Novel 2D materials, such as hafnium disulfide, have shown promise as an active channel layer, while hafnium dioxide is already proven to be a replacement of silicon dioxide for the gate insulating layer. However, fabrication techniques for wide-scale integration of these heterostructures have not yet been achieved. Also, the dielectric properties …


Atomic Layer Deposition Of Zirconium Oxide Thin Film On An Optical Fiber Forcladding Light Strippers, Ali̇ Karatutlu Jan 2020

Atomic Layer Deposition Of Zirconium Oxide Thin Film On An Optical Fiber Forcladding Light Strippers, Ali̇ Karatutlu

Turkish Journal of Physics

Cladding light strippers are essential components in high-power fiber lasers used for removal of unwanted cladding light that can distort the beam quality or even damage the whole fiber laser system. In this study, an Atomic Layer Deposition system was used for the first time to prepare the cladding light stripper devices using a 40 nm thick zirconia layer grown on optical fiber. The thickness of the zirconia coating was confirmed using the Scanning Electron Microscopy (SEM) and the Ellipsometry techniques. The elemental analysis was also performed using the wavelength dispersive X-ray spectroscopy technique. The Raman spectroscopy and XRD data …


Nanoscale Control Of Metal Oxideand Carbonaceous Functional Materials, Benjamin W. Lamm Apr 2019

Nanoscale Control Of Metal Oxideand Carbonaceous Functional Materials, Benjamin W. Lamm

Theses and Dissertations

The controlled fabrication of nanometer scale devices is of fundamental concern for numerous technologies, from separations to electronics and catalysis. The complexity of device architectures calls for the development of synthetic methods that independently control each feature: pore dimensions, wall thickness, and any subsequent functional nanomaterial layers (e.g. photoactive electrocatalysts). Precision control over these orthogonal methods can be used to integrate 3D and 1D nanostructures.

This dissertation presents the development of techniques useful in fabricating highly controlled nanoscale devices. The growth of single-phase bismuth vanadate (BiVO4) by atomic layer deposition (ALD) is demonstrated for the first time, allowing for the …


Penetration Depth Variation In Atomic Layer Deposition On Multiwalled Carbon Nanotube Forests, David Alan Kane Dec 2018

Penetration Depth Variation In Atomic Layer Deposition On Multiwalled Carbon Nanotube Forests, David Alan Kane

Theses and Dissertations

Atomic Layer Deposition (ALD) of Al2O3 on tall multiwalled carbon nanotube forests shows concentration variation with the depth in the form of discrete steps. While ALD is capable of extremely conformal deposition in high aspect ratio structures, decreasing penetration depth has been observed over multiple thermal ALD cycles on 1.3 mm tall multiwalled carbon nanotube forests. SEM imaging with Energy Dispersive X-ray Spectroscopy elemental analysis shows steps of decreasing intensity corresponding to decreasing concentrations of Al2O3. A study of these steps suggests that they are produced by a combination of diffusion limited delivery of precursors with increasing precursor adsorption site …


Improved Gas Sensing Performance Of Ald Azo 3-D Coated Zno Nanorods, P. Lin, X. Chen, K. Zhang, H. Baumgart Dec 2018

Improved Gas Sensing Performance Of Ald Azo 3-D Coated Zno Nanorods, P. Lin, X. Chen, K. Zhang, H. Baumgart

Electrical & Computer Engineering Faculty Publications

This paper reports an enhancement on the sensing performance of ZnO nanorod ethanol sensors with a new approach by utilizing nested coatings of Aluminum doped ZnO (AZO) thin films by Atomic Layer Deposition (ALD) technology. ZnO nanorods were grown by the hydrothermal method with the ZnO seed layer synthesized on Silicon wafers by ALD. To enhance the sensing performance of ZnO nanorod ethanol sensors, multiple coated AZO thin film 3-D coatings were deposited on the surface of the intrinsic ZnO nanorods by ALD.To investigate the sensing performance of the ZnO nanorods sensor for the detection of ethanol vapor, a gas …


Synthesis Of Volatile And Thermally Stable Aluminum Hydride Complexes And Their Use In Atomic Layer Deposition Of Metal Thin Films, Kyle Blakeney Jan 2018

Synthesis Of Volatile And Thermally Stable Aluminum Hydride Complexes And Their Use In Atomic Layer Deposition Of Metal Thin Films, Kyle Blakeney

Wayne State University Dissertations

The research discussed in this dissertation spans both synthetic inorganic and nanomaterials chemistry. Aluminum hydride complexes have been synthesized and characterized which are highly volatile and thermally stable and their potential as reducing agents for ALD of electropositive metal and metal-containing films was evaluated. A major discovery has been the deposition of aluminum metal films by thermal ALD using an aluminum dihydride complex supported by a simple amido-amine ligand (Chapters 2). Aluminum is the most electropositive element deposited by purely thermal ALD to date and represents a significant breakthrough for this field. This process may have important industrial applications and …


Chemically Stable Artificial Sei For Li-Ion Battery Electrodes, Qinglin Zhang, Lei Han, Jie Pan, Zhi Chen, Yang-Tse Cheng Mar 2017

Chemically Stable Artificial Sei For Li-Ion Battery Electrodes, Qinglin Zhang, Lei Han, Jie Pan, Zhi Chen, Yang-Tse Cheng

Chemical and Materials Engineering Faculty Publications

The importance of coating's chemical stability in lithium-ion batteries has been demonstrated by this study. It is well known that the mechanical properties determine the cycle life, and chemical stability or chemical degradation rate determines the calendar life. In this study, we used HfO2 coatings prepared by atomic layer deposition as an example to show the chemical stability of the coatings for lithium ion battery electrodes.


Synthesis And Characterization Of The 2-Dimensional Transition Metal Dichalcogenides, Robert Browning Mar 2017

Synthesis And Characterization Of The 2-Dimensional Transition Metal Dichalcogenides, Robert Browning

Dissertations and Theses

In the last 50 years, the semiconductor industry has been scaling the silicon transistor to achieve faster devices, lower power consumption, and improve device performance. Transistor gate dimensions have become so small that short channel effects and gate leakage have become a significant problem. To address these issues, performance enhancement techniques such as strained silicon are used to improve mobility, while new high-k gate dielectric materials replace silicon oxide to reduce gate leakage. At some point the fundamental limit of silicon will be reached and the semiconductor industry will need to find an alternate solution. The advent of graphene led …


Fabrication, Characterization, Optimization And Application Development Of Novel Thin-Layer Chromatography Plates, Supriya Singh Kanyal Dec 2014

Fabrication, Characterization, Optimization And Application Development Of Novel Thin-Layer Chromatography Plates, Supriya Singh Kanyal

Theses and Dissertations

This dissertation describes advances in the microfabrication of thin layer chromatography (TLC) plates. These plates are prepared by the patterning of carbon nanotube (CNT) forests on substrates, followed by their infiltration with an inorganic material. This document is divided into ten sections or chapters. Chapter 1 reviews the basics of conventional TLC technology. This technology has not changed substantially in decades. This chapter also mentions some of the downsides of the conventional approach, which include unwanted interactions of the binder in the plates with the analytes, relatively slow development times, and only moderately high efficiencies. Chapter 2 focuses primarily on …


Self-Assembled Nanocrystalline Zno Thin Film Transistor Performance Optimization For High Speed Applications, Burhan Bayraktaroglu, Kevin Leedy Jan 2014

Self-Assembled Nanocrystalline Zno Thin Film Transistor Performance Optimization For High Speed Applications, Burhan Bayraktaroglu, Kevin Leedy

Turkish Journal of Physics

ZnO nanocrystals grown at relatively low temperatures using various vacuum deposition techniques can yield semiconducting thin films of self-assembled nanocolumns 20-50 nm in diameter. Such films are suitable for the fabrication of high speed and transparent thin film transistors (TFTs). Unlike amorphous TFTs, the performance of ZnO transistors depends both on the crystal quality of nanocrystals and the electrical properties of boundary layers between them. We investigated the use of radio frequency sputtering, atomic layer deposition, and pulsed laser deposition techniques to fabricate self-assembled nanocrystalline thin films and determined the influence of deposition conditions on the performance of transistors. Device …


High Performance Membrane Electrode Assembly With Low Platinum Loadings Prepared By Atomic Layer Deposition For Pemfc Application, Ting Shu, Shi-Jun Liao, Chien-Te Hsieh, Ay Su Feb 2013

High Performance Membrane Electrode Assembly With Low Platinum Loadings Prepared By Atomic Layer Deposition For Pemfc Application, Ting Shu, Shi-Jun Liao, Chien-Te Hsieh, Ay Su

Journal of Electrochemistry

A high performance membrane electrode assembly (MEA) with low platinum loadings was successfully prepared with atomic layer deposition (ALD) technique. The anode of the MEA was prepared by depositing platinum on the carbon paper substrate, which was prepared by coating the slurry of carbon black (XC-72R) and Teflon, followed by drying and calcining at 350 °C. The MEAs consisted of the ALD anode or commercial catalyst anode, pretreated Nafion membrane (Nafion-117) and commercial cathode. Performances of MEAs were measured by single cell testing, and the anodes and MEAs were characterized by CV, SEM, TEM and XRD. The results revealed that …


Microfabrication, Characterization, And Application Of Carbon Nanotube Templated Thin Layer Chromatography Plates, And Functionalization Of Porous Graphitic Carbon, David S. Jensen Nov 2012

Microfabrication, Characterization, And Application Of Carbon Nanotube Templated Thin Layer Chromatography Plates, And Functionalization Of Porous Graphitic Carbon, David S. Jensen

Theses and Dissertations

This dissertation contains the following sections. Chapter 1 contains a detailed description of the theory of thin layer chromatography (TLC). Chapter 2 describes the benefits and practical considerations of elevated temperatures in liquid chromatography (LC). The porous graphitic carbon (PGC) I modified as part of my work is often used in elevated temperature LC. Chapter 3 shows a thermodynamic analysis of chromatographic retention at elevated temperature, and Chapter 4 contains a closer look at the van 't Hoff equation in LC and how it can be used in retention modeling. In Chapter 5, I describe a new procedure for microfabricating …


Effects Of Metallic, Semiconducting, And Insulating Substrates On The Coupling Involving Radiative Polaritons In Thin Oxide Films, Anita J. Vincent-Johnson, Kyle A. Vasquez, Giovanna Scarel, James S. Hammonds Jr., Mathieu Francoeur Feb 2012

Effects Of Metallic, Semiconducting, And Insulating Substrates On The Coupling Involving Radiative Polaritons In Thin Oxide Films, Anita J. Vincent-Johnson, Kyle A. Vasquez, Giovanna Scarel, James S. Hammonds Jr., Mathieu Francoeur

Department of Physics and Astronomy - Faculty Scholarship

Through simulations, this work explores the effects of conducting, semiconducting, and insulating substrates on the absorption of infrared radiation by radiative polaritons in oxide layers with thicknesses that range from 30 nm to 9 μm. Using atomic layer deposition, oxide layers can be formed in the nanometer scale. Our results suggest that the chemistry and conductivity of the substrate determine the amount of absorption by radiative polaritons in oxide layers thinner than the skin depth. The effects of the chemistry and conductivity of the substrate are especially effective for oxide films thinner than about 250 nm, which we label as …


Wetting Properties Induced In Nano-Composite Poss-Ma Polymer Films By Atomic Layer Deposited Oxides, Kyle A. Vasquez, Anita J. Vincent-Johnson, W. Chris Hughes, Brian H. Augustine, Kyoungmi Lee, Gregory N. Parsons, Giovanna Scarel Sep 2011

Wetting Properties Induced In Nano-Composite Poss-Ma Polymer Films By Atomic Layer Deposited Oxides, Kyle A. Vasquez, Anita J. Vincent-Johnson, W. Chris Hughes, Brian H. Augustine, Kyoungmi Lee, Gregory N. Parsons, Giovanna Scarel

Department of Physics and Astronomy - Faculty Scholarship

Due to their unique properties, nano-composite polyhedral oligomeric silsequioxane (POSS) copolymer films are attractive for various applications. Here we show that their natural hydrophobic character can become hydrophilic when the films are modified by a thin oxide layer, up to 8 nm thick, prepared using atomic layer deposition. A proper choice of the deposition temperature and thickness of the oxide layer are required to achieve this goal. Unlike other polymeric systems, a marked transition to a hydrophilic state is observed with oxide layers deposited at increasing temperatures up to the glass transition temperature (∼110 °C) of the POSS copolymer film. …


Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily Apr 2011

Synthesis Of Ald Zinc Oxide And Thin Film Materials Optimization For Uv Photodetector Applications, Kandabara Nouhoum Tapily

Electrical & Computer Engineering Theses & Dissertations

Zinc oxide (ZnO) is a direct, wide bandgap semiconductor material. It is thermodynamically stable in the wurtzite structure at ambient temperature conditions. ZnO has very interesting optical and electrical properties and is a suitable candidate for numerous optoelectronic applications such as solar cells, LEDs and UV-photodetectors. ZnO is a naturally n-type semiconductor. Due to the lack of reproducible p-type ZnO, achieving good homojunction ZnO-based photodiodes such as UV-photodetectors remains a challenge. Meanwhile, heterojunction structures of ZnO with p-type substrates such as SiC, GaN, NiO, AlGaN, Si etc. are used; however, those heterojunction diodes suffer from low efficiencies. ZnO is an …


Tris(Dialkylamino)Aluminums: Syntheses, Characterization, Volatility Comparison, And Atomic Layer Deposition Of Alumina Thin Films, Casey R. Wade, Carter Silvernail, Chiranjib Banerjee, Axel Soulet, James Mcandrew, John A. Belot Jr. Dec 2007

Tris(Dialkylamino)Aluminums: Syntheses, Characterization, Volatility Comparison, And Atomic Layer Deposition Of Alumina Thin Films, Casey R. Wade, Carter Silvernail, Chiranjib Banerjee, Axel Soulet, James Mcandrew, John A. Belot Jr.

Chemistry Department: Faculty Publications

The syntheses and characterization of both tris(diethylamino)aluminum and tris(diisopropylamino)aluminum are presented in this letter. Characterization includes vapor pressure measurements and comparison of the two non-pyrophoric precursors showing them to be viable alternatives to trimethylaluminum. Ultimately, tris(diisopropyl)aluminum was successful in the atomic layer deposition of alumina thin films.