Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Argon

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 44

Full-Text Articles in Physical Sciences and Mathematics

Doubly Charged Dimers And Trimers Of Heavy Noble Gases, Gabriel Schöpfer, Stefan Bergmeister, Milan Ončák, Ianessa Stromberg, Masoomeh Mahmoodi-Darian, Paul Scheier, Olof Echt, Elisabeth Gruber Mar 2024

Doubly Charged Dimers And Trimers Of Heavy Noble Gases, Gabriel Schöpfer, Stefan Bergmeister, Milan Ončák, Ianessa Stromberg, Masoomeh Mahmoodi-Darian, Paul Scheier, Olof Echt, Elisabeth Gruber

Faculty Publications

Many doubly charged heteronuclear dimers are metastable or even thermodynamically stable with respect to charge separation. Homonuclear dicationic dimers, however, are more difficult to form. He22+ was the first noble gas dimer predicted to be metastable and, decades later, observed. Ne22+ is the only other dicationic noble gas dimer that has been detected so far. Here, we present a novel approach to form fragile dicationic species, by post-ionization of singly charged ions that are embedded in helium nanodroplets (HNDs). Bare ions are then extracted by colliding the HNDs with helium gas. We detect homonuclear doubly charged …


Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back May 2023

Apparatus And Instrumentation Design For Investigation Of Surface Impact Effects On Superconductivity, Austin Back

All Theses

The effects of ion irradiation on the physical properties of materials make EBITs an invaluable tool for many scientific and engineering fields. Many experiments rely on the use of these lab setups to test for device reliability, explore surface physics phenomena, and replicate the environment for many physical systems that are not readily accessible. We seek to extend the capabilities of these experiments using the CUEBIT and a new sample holder installed in section 3.

This thesis begins by presenting an overview of the CUEBIT and the basic operations of the equipment. This is followed by a brief explanation of …


Sea Ice Formation, Glacial Melt And The Solubility Pump Boundary Conditions In The Ross Sea, Brice Loose, Sharon Stammerjohn, Peter Sedwick, Stephen Ackley Jan 2023

Sea Ice Formation, Glacial Melt And The Solubility Pump Boundary Conditions In The Ross Sea, Brice Loose, Sharon Stammerjohn, Peter Sedwick, Stephen Ackley

OES Faculty Publications

Seasonal formation of Dense Shelf Water (DSW) in the Ross Sea is a direct precursor to Antarctic Bottom Water, which fills the deep ocean with atmospheric gases in what composes the southern limb of the solubility pump. Measurements of seawater noble gas concentrations during katabatic wind events in two Ross Sea polynyas reveal the physical processes that determine the boundary value properties for DSW. This decomposition reveals 5–6 g kg−1 of glacial meltwater in DSW and sea-ice production rates of up to 14 m yr−1 within the Terra Nova Bay polynya. Despite winds upwards of 35 m s …


The Population Densities Of Argon Metastable Levels, Nada Khogeer, Chelsy Gonzalez, Milka Nikolic Apr 2019

The Population Densities Of Argon Metastable Levels, Nada Khogeer, Chelsy Gonzalez, Milka Nikolic

Physics and Astronomy

In this experiment, we used the optical emission spectroscopy (OES) method to obtain the main properties of low temperature Argon plasma. The experiment was sustained in powers and pressures that ranges from 30-100 W and 15-100 mTorr. We used numerical methods for the Argon kinetic model to calculate metastable levels and resonant states for the first excited states in low temperature Argon plasma. By finding the ratio of two spectral lines and finding another ratio from a different upper energy level that goes down to the same two lower energy levels, we can construct a system of two nonlinear equations. …


Antineutrino-Induced Charge Current Quasi-Elastic Neutral Hyperon Cross-Section On Argon In Argoneut, Samuel M. Borer May 2018

Antineutrino-Induced Charge Current Quasi-Elastic Neutral Hyperon Cross-Section On Argon In Argoneut, Samuel M. Borer

Honors College

This thesis outlines the first measurement of CCQE neutral hyperon production cross section in a liquid argon time projection chamber (LArTPC) through a topological study [1] and presents the ongoing progress of the addition of a calorimetric study. The analysis uses 1.20 £ 1020 protons-on-target, in the NuMI beam operating in the low energy antineutrino mode. The results of the topological study provide a total cross section measurement at the mean production energy of 3.42 GeV for CCQE neutral hyperons. The result of the topological study is consistent with the NUANCE cross section model and sets a 90% confidence level …


Two-Photon Excitation Of Cesium Alkali Metal Vapor 72D, 82D Kinetics And Spectroscopy, Ricardo C. Davila Mar 2018

Two-Photon Excitation Of Cesium Alkali Metal Vapor 72D, 82D Kinetics And Spectroscopy, Ricardo C. Davila

Theses and Dissertations

Pulsed excitation on the two-photon Cs 62S½ → 72D3/2,5/2 transition results in time-resolved fluorescence at 697 nm and 672 nm. The rates for fine structure mixing between the 72D3/2,5/2 states have been measured for helium and argon rare gas collision partners. The mixing rates are very fast, 1.26 ± 0.05 x 10-9 cm3/(atom sec) for He and 1.52 ± 0.05 x 10-10 cm3 /(atom sec) for Ar, driven by the small energy splitting and large radial distribution for the valence electron. …


Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson Mar 2018

Excited Argon 1s5 Production In Microhollow Cathode Discharges, Richard D. Peterson

Theses and Dissertations

Diode-pumped rare gas lasers (DPRGL) have been in development for their potential to become high energy lasers with excellent beam quality that is typical of gas lasers. DPRGL require metastable densities on the order of 1013 cm-3 at pressures around one atmosphere for efficient operation. Argon 1s5 number densities have been measured in microhollow cathode discharges (MHCD) using tunable diode laser absorption spectroscopy. The MHCD had copper electrodes with gaps of 127 and 254 µm and hole diameters from 100-400 µm. Absorbance was measured at pressures of 37 Torr up to 400 Torr, where absorbance could no longer …


Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong Feb 2018

Inactivation Of Myeloma Cancer Cells By Helium And Argon Plasma Jets: The Effect Comparison And The Key Reactive Species, Zeyu Chen, Qingjie Cui, Chen Chen, Dehui Xu, Dingxin Liu, H. L. Chen, Michael G. Kong

Bioelectrics Publications

In plasma cancer therapy, the inactivation of cancer cells under plasma treatment is closely related to the reactive oxygen and nitrogen species (RONS) induced by plasmas. Quantitative study on the plasma-induced RONS that related to cancer cells apoptosis is critical for advancing the research of plasma cancer therapy. In this paper, the effects of several reactive species on the inactivation of LP-1 myeloma cancer cells are comparatively studied with variable working gas composition, surrounding gas composition, and discharge power. The results show that helium plasma jet has a higher cell inactivation efficiency than argon plasma jet under the same discharge …


Kinetics Of High Pressure Argon-Helium Pulsed Gas Discharge, Daniel J. Emmons, David E. Weeks May 2017

Kinetics Of High Pressure Argon-Helium Pulsed Gas Discharge, Daniel J. Emmons, David E. Weeks

Faculty Publications

Simulations of a pulsed direct current discharge are performed for a 7% argon in helium mixture at a pressure of 270 Torr using both zero- and one-dimensional models. Kinetics of species relevant to the operation of an optically pumped rare-gas laser are analyzed throughout the pulse duration to identify key reaction pathways. Time dependent densities, electron temperatures, current densities, and reduced electric fields in the positive column are analyzed over a single 20 μs pulse, showing temporal agreement between the two models. Through the use of a robust reaction rate package, radiation trapping is determined to play a key role …


Validation Of Argon From Underground Sources For Use In The Darkside-50 Detector, Thomas R. Alexander Nov 2015

Validation Of Argon From Underground Sources For Use In The Darkside-50 Detector, Thomas R. Alexander

Masters Theses

Liquid argon is an attractive target for dark matter searches due to its low cost and exemplary event discrimination. However, atmospherically derived argon contains the beta-emitter 39Ar which confounds the growth of dual-phase time projection chamber (TPC) style detectors to the ton-scale. The DarkSide Collaboration seeks to bypass this limitation by extracting argon from deep underground, from a location known to contain significantly less 39Ar than atmospherically derived argon. This thesis will summarize the e orts taken to produce the first batch of underground argon, focusing on the first operation of the underground argon in a dual-phase TPC to validate …


Measurements Of Population Densities Of Metastable And Resonant Levels Of Argon Using Laser Induced Fluorescence, M. Nikolic, J. Newton, C. I. Sukenik, L. Vuskovic, S. Popovic Jan 2015

Measurements Of Population Densities Of Metastable And Resonant Levels Of Argon Using Laser Induced Fluorescence, M. Nikolic, J. Newton, C. I. Sukenik, L. Vuskovic, S. Popovic

Physics Faculty Publications

We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. …


Nonexistent Compounds As A Guide To Innovation, Dean F. Martin, Barbara B. Martin Jan 2014

Nonexistent Compounds As A Guide To Innovation, Dean F. Martin, Barbara B. Martin

Chemistry Faculty Publications

A study of nonexistent compounds can be a useful exercise in gaining insight into the factors that can inhibit innovation. Several reasons are suggested: lack of financial support, disinterest in preparing compounds that lack evident utility, notable synthetic challenges with inadequate rewards, inhibition by well-established contemporary knowledge, and invalid interpolations.


Experimental Investigation Of Long-Lived Rydberg States In Ultracold Argon, G. Ranjit, C. I. Sukenik Mar 2013

Experimental Investigation Of Long-Lived Rydberg States In Ultracold Argon, G. Ranjit, C. I. Sukenik

Physics Faculty Publications

We report on our investigation of the formation and survival of long-lived Rydberg states in argon produced by pulsed laser excitation of ultracold metastable state argon atoms in a magneto-optical trap. The states studied have a 2P1/2 core. Low angular momentum Rydberg states with this core normally autoionize rapidly. If, however, atoms are excited in the presence of electric fields, higher angular momentum states, traditionally termed ZEKE states (ZEKE is derived from zero kinetic energy) can be formed. The lifetime of these states can be orders of magnitude greater than low angular momentum states. In this paper, we report on …


Petrogenesis Of The East Fork Member Rhyolites, Valles Caldera, New Mexico, Usa, Carla Eichler Dec 2012

Petrogenesis Of The East Fork Member Rhyolites, Valles Caldera, New Mexico, Usa, Carla Eichler

UNLV Theses, Dissertations, Professional Papers, and Capstones

The most recent volcanism in the Valles caldera is represented by the El Cajete Pyroclastic Beds (ECPB), Battleship Rock Ignimbrite (BRI), and Banco Bonito Flow (BBF) as well as the VC-1 rhyolite, which are collectively known as the East Fork Member (EFM) of the Valles Rhyolite. The EFM was erupted at approximately 55 ka and 40 ka after an approximate 460 ka lull in volcanism. Previous studies suggested a mafic intrusion at depth triggered the eruptions. This thesis represents the first detailed study of the EFM.

Crystal assemblages consist of plagioclase, biotite, clinopyroxene, orthopyroxene, amphibole, sanidine, quartz, and oxides. Electron …


Blackbody-Radiation Correction To The Polarizability Of Helium, Mariusz Puchalski, Ulrich D. Jentschura, Peter J. Mohr Apr 2011

Blackbody-Radiation Correction To The Polarizability Of Helium, Mariusz Puchalski, Ulrich D. Jentschura, Peter J. Mohr

Physics Faculty Research & Creative Works

The correction to the polarizability of helium due to blackbody radiation is calculated near room temperature. A precise theoretical determination of the blackbody radiation correction to the polarizability of helium is essential for dielectric gas thermometry and for the determination of the Boltzmann constant. We find that the correction, for not too high temperature, is roughly proportional to a modified hyperpolarizability (two-color hyperpolarizability), which is different from the ordinary hyperpolarizability of helium. Our explicit calculations provide a definite numerical result for the effect and indicate that the effect of blackbody radiation can be excluded as a limiting factor for dielectric …


Photoassociative Spectroscopy Of Ultracold Metastable Argon, M. K. Shaffer, G. Ranjit, C. I. Sukenik, M. Walhout Jan 2011

Photoassociative Spectroscopy Of Ultracold Metastable Argon, M. K. Shaffer, G. Ranjit, C. I. Sukenik, M. Walhout

Physics Faculty Publications

We present results of photoassociative spectroscopy performed on ultracold metastable argonatoms in a magneto-optical trap. Ion spectra are obtained with laser detuning up to a few gigahertz below the 4s[3/2]2 → 4p[5/2]3 trapping transition at 811 nm and with intensities in a range of ~(102-105)ISat. We also compute dipole-dipole potentials for both singly and doubly excited diatomic molecules and use a Leroy-Bernstein analysis to determine the approximate vibrational spacings in the (s+p) and (p+p) manifolds. Based on this theoretical framework, we explain a broad background feature in our data and suggest that …


K-Ar Age Values Of Bulk Soil Samples And Clay Fractions: Effects Of Acid Extraction And Implications For The Origin Of Micaceous Clay In Savannah River Site Soils, South Carolina, Usa, Thomas E. Naumann Aug 2010

K-Ar Age Values Of Bulk Soil Samples And Clay Fractions: Effects Of Acid Extraction And Implications For The Origin Of Micaceous Clay In Savannah River Site Soils, South Carolina, Usa, Thomas E. Naumann

Geosciences Theses

Understanding how natural Cs, Rb, and K have been redistributed in Savannah River Site (SRS) soils during pedogenesis is important to understanding how radiocesium released to the soils will behave over the long term. In this effort, it is important to distinguish K that has participated in mineral-water reactions from that still residing in primary silicate structures, particularly in the clay fraction. The impact of different degrees of acid extraction on K and radiogenic Ar in bulk soil and in clay from five SRS soil samples has been determined. Strong treatment (50% HNO3, three hours, 100°C) releases K from primary …


Triply Differential Single Ionization Of Argon: Charge Effects For Positron And Electron Impact, Sebastian Otranto, Ronald E. Olson, O. G. De Lucio, Robert D. Dubois Apr 2010

Triply Differential Single Ionization Of Argon: Charge Effects For Positron And Electron Impact, Sebastian Otranto, Ronald E. Olson, O. G. De Lucio, Robert D. Dubois

Physics Faculty Research & Creative Works

Triply differential single ionization of Ar by 200 eV positron and electron impact is measured and calculated. For an unequivocal test of kinematic differences, fully differential ejected electron angular distributions are measured using the same experimental apparatus and conditions for both positron and electron impact. The binary/recoil intensity ratios are shown to significantly differ for the two projectiles. These data are used to test theoretical calculations.


Determining Metastable Densities In An Argon Discharge Through Optical Emission Spectroscopy, Jared A. Miles Jan 2010

Determining Metastable Densities In An Argon Discharge Through Optical Emission Spectroscopy, Jared A. Miles

Browse all Theses and Dissertations

A plasma diagnostic technique has been experimentally demonstrated where optical emission measurements of relative intensities of spectral lines in the violet range were combined with available electron-impact cross sections to yield absolute Ar metastable species concentration. An enabling factor of this analysis was that the electron excitation pattern was quite different between the Ar ground state and the metastable state. The result of this pattern was that the optical spectrum was unique depending on whether the emission was generated by direct excitation from the ground state, or by stepwise excitation from one of the metastable states. This study has shown …


Light-Particle Single Ionization Of Argon: Influence Of The Projectile Charge Sign, Sebastian Otranto, Ronald E. Olson Jul 2009

Light-Particle Single Ionization Of Argon: Influence Of The Projectile Charge Sign, Sebastian Otranto, Ronald E. Olson

Physics Faculty Research & Creative Works

The ionization of the 3p orbital of argon by incident electrons and positrons is studied by means of the post version of the continuum distorted wave-eikonal initial-state model. Results are presented at both 200 and 500 eV impact energies for conditions amenable to present experiments. Differences in the fully differential cross sections (FDCSs) are analyzed and the influence of the projectile charge sign on the emission dynamics is discussed. The FDCSs are found to display the classic binary plus recoil peak structure at 500 eV, but transition to a more complicated four-lobed structure at the lower impact energy.


Accurate Retrieval Of Target Structures And Laser Parameters Of Few-Cycle Pulses From Photoelectron Momentum Spectra, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, J. Rauschenberger, M. F. Kling, C. D. Lin Feb 2009

Accurate Retrieval Of Target Structures And Laser Parameters Of Few-Cycle Pulses From Photoelectron Momentum Spectra, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, J. Rauschenberger, M. F. Kling, C. D. Lin

Physics Faculty Research & Creative Works

We illustrate a new method of analyzing three-dimensional momentum images of high-energy photoelectrons generated by intense phase-stabilized few-cycle laser pulses. Using photoelectron momentum spectra that were obtained by velocity-map imaging of above-threshold ionization of xenon and argon targets, we show that the absolute carrier-envelope phase, the laser peak intensity, and pulse duration can be accurately determined simultaneously (with an error of a few percent). We also show that the target structure, in the form of electron-target ion elastic differential cross sections, can be retrieved over a range of energies. The latter offers the promise of using laser-generated electron spectra for …


Quantitative Rescattering Theory For Nonsequential Double Ionization Of Atoms By Intense Laser Pulses, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, C. D. Lin Jan 2009

Quantitative Rescattering Theory For Nonsequential Double Ionization Of Atoms By Intense Laser Pulses, Samuel Micheau, Zhangjin Chen, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

Laser-induced electron recollisions are fundamental to many strong field phenomena in atoms and molecules. Using the recently developed quantitative rescattering theory, we demonstrate that the nonsequential double ionization (NSDI) of atoms by lasers can be obtained quantitatively in terms of inelastic collisions of the target ions with the free returning electrons where the latter are explicitly given by a spectrum-characterized wave packet. Using argon atoms as target, we calculated the NSDI yield including contributions from direct (e,2e) electron-impact ionization and electron-impact excitation accompanied by subsequent field ionization. We further investigate the dependence of total NSDI on the carrier-envelope phase of …


Photoassociative Spectroscopy Of Ultracold Metastable Argon And Study Of Dual Species Trap Loss In A Rubidium-Metastable Argon Mot, Michael K. Shaffer Apr 2008

Photoassociative Spectroscopy Of Ultracold Metastable Argon And Study Of Dual Species Trap Loss In A Rubidium-Metastable Argon Mot, Michael K. Shaffer

Physics Theses & Dissertations

This dissertation presents the findings of two experimental investigations in ultracold atomic and molecular physics: The study of the dual species trap loss in a rubidium - metastable argon magneto-optical trap and the photoassociative spectroscopy of ultracold metastable argon. The interspecies trap loss rate coefficients have been measured for ultracold collisions between 85Rb and 40Ar* in a dual-species magneto-optical trap (MOT) and the two rates have been found to be approximately equal over the range of intensities studied with values of β'Rb–Ar* = 3.0 ± 1.3 × 10-11 cm3/s and β'Ar*–Rb = 1.9 …


Triply Differential Ionization Of Ar By 500 Ev Positron And Electron Impact, O. G. De Lucio, Jared M. Gavin, Robert D. Dubois Jul 2007

Triply Differential Ionization Of Ar By 500 Ev Positron And Electron Impact, O. G. De Lucio, Jared M. Gavin, Robert D. Dubois

Physics Faculty Research & Creative Works

Coincidences between recoil ions-ejected electrons and recoil ions-scattered projectiles have been used to study the kinematics of electron and positron impact ionization. Triply Differential (TDCS) data for 500 eV positron and electron impact on Ar are presented here as function of scattering angle for a given range of energy losses. Binary and recoil interactions can be distinguished allowing us to determine the relative intensity between those interactions. Preliminary integration of the data indicate an enhancement of the binary region for positron interaction while for electron impact the intensity of the recoil and binary interactions is comparable.


Few-Photon Multiple Ionization Of Ne And Ar By Strong Free-Electron-Laser Pulses, Robert Moshammer, Yuhai Jiang, L. Foucar, Artem Rudenko, Th. Ergler, Claus Dieter Schroter, S. Ludemann, Karl Zrost, Daniel Fischer, J. Titze, Till Jahnke, Markus S. Schoffler, Th Weber, Reinhard Dorner, Theo J.M. Zouros, Alexander Dorn, T. Ferger, Kai Uwe Kuhnel, S. Dusterer, R. Treusch, Paul Radcliffe, Elke Plonjes, Joachim Hermann Ullrich May 2007

Few-Photon Multiple Ionization Of Ne And Ar By Strong Free-Electron-Laser Pulses, Robert Moshammer, Yuhai Jiang, L. Foucar, Artem Rudenko, Th. Ergler, Claus Dieter Schroter, S. Ludemann, Karl Zrost, Daniel Fischer, J. Titze, Till Jahnke, Markus S. Schoffler, Th Weber, Reinhard Dorner, Theo J.M. Zouros, Alexander Dorn, T. Ferger, Kai Uwe Kuhnel, S. Dusterer, R. Treusch, Paul Radcliffe, Elke Plonjes, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

Few-photon multiple ionization of Ne and Ar atoms by strong vacuum ultraviolet laser pulses from the free-electron laser at Hamburg was investigated differentially with the Heidelberg reaction microscope. The light-intensity dependence of Ne2+ production reveals the dominance of nonsequential two-photon double ionization at intensities of I< 6 x 1012W/cm2 and significant contributions of three-photon ionization as I increases. Ne2+ recoil-ion-momentum distributions suggest that two electrons absorbing "instantaneously" two photons are ejected most likely into opposite hemispheres with similar energies.


Differential Electron Emission For Single And Multiple Ionization Of Argon By 500 Ev Positrons, Jared M. Gavin, Robert D. Dubois, O. G. De Lucio Dec 2006

Differential Electron Emission For Single And Multiple Ionization Of Argon By 500 Ev Positrons, Jared M. Gavin, Robert D. Dubois, O. G. De Lucio

Physics Faculty Research & Creative Works

Triply differential electron emission cross sections are measured for single ionization of argon by 500 eV positrons. Data are presented for coincidences between projectiles scattered into angles of 3° and electrons with emission energies less than 10 eV that are observed between 45 and 135° along the beam direction. For interpretation, these are compared to cosine squared representations of the binary and recoil lobes which are convoluted over experimental parameters. Singly differential electron emission data for double and triple ionization by positrons are also presented.


Exploring Relativistic Many-Body Recoil Effects In Highly Charged Ions, R. Soria Orts, Zoltan Harman, Jose R. Crespo Lopez-Urrutia, Anton N. Artemyev, Hjalmar Bruhns, Antonio J. Gonzalez, Ulrich D. Jentschura, Christoph H. Keitel, Alain Lapierre, Vladimir Sergeyevich Mironov, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka Sep 2006

Exploring Relativistic Many-Body Recoil Effects In Highly Charged Ions, R. Soria Orts, Zoltan Harman, Jose R. Crespo Lopez-Urrutia, Anton N. Artemyev, Hjalmar Bruhns, Antonio J. Gonzalez, Ulrich D. Jentschura, Christoph H. Keitel, Alain Lapierre, Vladimir Sergeyevich Mironov, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka

Physics Faculty Research & Creative Works

The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s22s22p 2P1/2-2P3/2 transition in Ar13+ and the 1s22s2p 3P1-3P2 transition …


Trap Loss In A Dual-Species Rb-Ar* Magneto-Optical Trap, H. C. Busch, M. K. Shaffer, E. M. Ahmed, C. I. Sukenik Feb 2006

Trap Loss In A Dual-Species Rb-Ar* Magneto-Optical Trap, H. C. Busch, M. K. Shaffer, E. M. Ahmed, C. I. Sukenik

Physics Faculty Publications

We have investigated trap loss in a dual-species magneto-optical trap (MOT) comprised of 85Rb and metastable 40Ar. We measure the trap loss rate coefficients for each species due to the presence of the other as a function of trap light intensity. We clearly identify both Penning ionization of Rb by Ar* and associative ionization to form the molecular ion RbAr+ as two of the trap loss channels. We have also measured the trap loss rate coefficient for the Ar* MOT alone and observe production of Ar+ and Ar2+ ions.


Ionization Of Atoms With Spin Polarized Electrons, J. Lower, S. Bellm, R. Panajotovic, E. Weigold, A. Prideaux, Z. Stegen, Don H. Madison, Colm T. Whelan, B. Lohmann Jan 2006

Ionization Of Atoms With Spin Polarized Electrons, J. Lower, S. Bellm, R. Panajotovic, E. Weigold, A. Prideaux, Z. Stegen, Don H. Madison, Colm T. Whelan, B. Lohmann

Physics Faculty Research & Creative Works

The most detailed insight into the process of electron impact-induced ionization of atomic species is provided by measurements in which both kinematical and quantum mechanical variables are determined. Here we describe recent (e,2e) experimental and theoretical studies involving the ionization of xenon and argon by spin-polarized electrons in which the fine-structure levels of the ion are energetically resolved. Such investigations shed light on the mechanisms driving the ionization reaction and the role of exchange and relativistic processes.


Relativistic Electron Correlation, Quantum Electrodynamics, And The Lifetime Of The 1s²2s²2p²PO3/2 Level In Boronlike Argon, Alain Lapierre, Ulrich D. Jentschura, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Daniel A. Fischer, Antonio J. Gonzalez, Zoltan Harman, Walter Johnson, Christoph H. Keitel, Vladimir Sergeyevich Mironov, C. J. Osborne, Guenther Sikler, R. Soria Orts, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka Oct 2005

Relativistic Electron Correlation, Quantum Electrodynamics, And The Lifetime Of The 1s²2s²2p²PO3/2 Level In Boronlike Argon, Alain Lapierre, Ulrich D. Jentschura, Jose R. Crespo Lopez-Urrutia, Jean Pierre Braun, Gunter Brenner, Hjalmar Bruhns, Daniel A. Fischer, Antonio J. Gonzalez, Zoltan Harman, Walter Johnson, Christoph H. Keitel, Vladimir Sergeyevich Mironov, C. J. Osborne, Guenther Sikler, R. Soria Orts, Vladimir M. Shabaev, Hiroyuki Tawara, I. I. Tupitsyn, Joachim Hermann Ullrich, Andrey V. Volotka

Physics Faculty Research & Creative Works

The lifetime of the Ar13+ 1s22s22p2Po3/2 metastable level was determined at the Heidelberg Electron Beam Ion Trap to be 9.573(4)(5)ms(stat)(syst). The accuracy level of one per thousand makes this measurement sensitive to quantum electrodynamic effects like the electron anomalous magnetic moment (EAMM) and to relativistic electron-electron correlation effects like the frequency-dependent Breit interaction. Theoretical predictions, adjusted for the EAMM, cluster about a lifetime that is approximately 3σ shorter than our experimental result.