Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz Dec 2019

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz

Graduate Theses and Dissertations

Microdialysis (µD) sampling is a diffusion-limited sampling method that has been widely used in different biomedical fields for greater than 35 years. Device calibration for in vivo studies is difficult for current non-steady state analytes of interest correlated with both inflammatory response and microbial signaling molecules (QS); which exist in low ng/mL to pg/mL with molecular weights over a wide range of 170 Da to 70 kDa. The primary performance metric, relative recovery (RR), relating the collected sample to the extracellular space concentration varies from 10% to 60% per analyte even under controlled bench-top conditions. Innovations in microdialysis device design …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


3d Printed Microfluidic Devices For Bioanalysis, Michael J. Beauchamp Jul 2019

3d Printed Microfluidic Devices For Bioanalysis, Michael J. Beauchamp

Theses and Dissertations

This work presents the development of 3D printed microfluidic devices and their application to microchip analysis. Initial work was focused on the development of the printer resin as well as the development of the general rules for resolution that can be achieved with stereolithographic 3D printing. The next stage of this work involved the characterization of the printer with a variety of interior and exterior resolution features. I found that the minimum positive and negative feature sizes were about 20 μm in either case. Additionally, micropillar arrays were printed with pillar diameters as small as 16 μm. To demonstrate one …


Dna Capture Via Magnetic Beads In A Microfluidic Platformfor Rapid Detection Of Antibiotic Resistance Genes, David Hyrum Harris Jul 2019

Dna Capture Via Magnetic Beads In A Microfluidic Platformfor Rapid Detection Of Antibiotic Resistance Genes, David Hyrum Harris

Theses and Dissertations

Antibiotic resistant infections are a growing health care concern, with many cases reported annually. Infections can cause irreversible bodily damage or death if they are not diagnosed in a timely matter. To rapidly diagnose antibiotic resistance in infections, it is important to be able to capture and isolate the DNA coding for the resistance genes. This is challenging because bacteria are present in blood in minute concentrations. To enrich the DNA to detectable levels, I modified magnetic microbeads with ssDNA sequences complementary to the target DNA to capture the DNA via hybridization. I compared DNA capture efficiency in three different …


Capillary Migration Of Large Confined Drops In Non-Wetting Wedges, Logan John Torres Mar 2019

Capillary Migration Of Large Confined Drops In Non-Wetting Wedges, Logan John Torres

Dissertations and Theses

When confined within containers or conduits, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, system geometry, and initial conditions. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration and ejection of large inertial-capillary drops confined between tilted planar hydrophobic substrates. In our experiments, the brief nearly weightless environment of a drop tower allows for the study of such capillary dominated behavior for up to 10 mL water drops with migration velocities up to …


Fabrication Of Miniaturized Paper-Based Microfluidic Devices (Micropads), E. Brandon Strong, Spencer A. Schultz, Andres Martinez, Nathaniel W. Martinez Jan 2019

Fabrication Of Miniaturized Paper-Based Microfluidic Devices (Micropads), E. Brandon Strong, Spencer A. Schultz, Andres Martinez, Nathaniel W. Martinez

Chemistry and Biochemistry

Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction …


Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel Jan 2019

Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel

Dissertations and Theses

Foams, a two-phase dispersion, are staples of the cosmetic, personal care, petroleum, pharmaceutical, and other industries. Central to these applications is the stability of the dispersion against separation. Foams break down by two mechanisms: the first is bubble coalescence, which is driven by the gravity drainage of the continuous phase. The drainage acts to push the bubbles against each other, and leads to the formation of thin lamellae, which break and cause the coalescence. The second is the mass transfer of the dispersed phase through the continuous phase, which is caused by the difference in pressures between the bubbles and …