Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Geophysical Regional Gravity Maps Of Turkey And Its General Assessment, Selim Arslan Oct 2016

Geophysical Regional Gravity Maps Of Turkey And Its General Assessment, Selim Arslan

Bulletin of the Mineral Research and Exploration

In this study, the maps generated from the regional gravity data, which had been measured within scope of “Türkiye Rejyonal Gravite Haritaları Projesi” (Regional Gravity Map of Turkey) project were introduced. The topography, Free Air, Bouguer gravity, isostatic residual, isostatic regional, density and crust thickness maps of Turkey in 1/1 500 000 scale were prepared using database which started in 1973 and ended in 2011. The boundaries of the main tectonic members were determined by crust thickness, isostatic residual and Bouguer gravity maps of Turkey. Within this scope, a database that will illuminate the investigation of crustal structure, the development …


Secure Communication Scheme In Smart Home Environment, Hari Krishna Jonnalagadda Jun 2016

Secure Communication Scheme In Smart Home Environment, Hari Krishna Jonnalagadda

USF Tampa Graduate Theses and Dissertations

Internet of Things, has started to mark its existence from past few years. Right from its inception with a coke machine at Carnegie Mellon University, it has come a long way, connecting billions of devices to internet. This journey is well supported by the advancements in networking, hardware miniaturization and sensing capabilities. Diverse nature of applications of Internet of Things, has cut the communication barriers between the varieties of fields ranging from manufacturing industry to health-care industry. Smart Home is one such application of Internet of Things. Connectivity of home appliances, to achieve automation in living, defines Smart Home. Out …


New Classical Solutions In Supergravity, Zhibai Zhang Jun 2016

New Classical Solutions In Supergravity, Zhibai Zhang

Dissertations, Theses, and Capstone Projects

In this Ph.D. thesis we construct three classes of new solutions to supergravity theories in various dimensions and study their properties. The first class is reduction ansatz of 10D and 11D supergravity on Ricci-flat and noncompact manifolds. These reductions are from a scaling limit of the famous spherical reductions, and can be solely supported by warp factors. The second class contains a large number of String/M theory solutions that have Lifshitz or Schrodinger scaling symmetry, obtained from marginally deforming the geometry of internal dimensions of previous solutions. We propose that these new solutions are dual to marginal deformations of certain …


Gravity Sector Of The Sme, Q. G. Bailey Jun 2016

Gravity Sector Of The Sme, Q. G. Bailey

Publications

In this talk, the gravity sector of the effective field theory description of local Lorentz violation is discussed, including minimal and nonminimal curvature couplings. Also, recent experimental and observational analyses including solar-system ephemeris and short-range gravity tests are reviewed.


Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al. Jun 2016

Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al.

Publications

Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics, called the Standard-Model Extension or SME. We consider in this work only the pure gravitational sector of the minimal SME. We present new constraints on the SME coefficients obtained from lunar laser ranging, very long baseline interferometry, and planetary motions.


Schwarzschild Spacetime And Friedmann-Lemaitre-Robertson-Walker Cosmology, Zachary Cohen May 2016

Schwarzschild Spacetime And Friedmann-Lemaitre-Robertson-Walker Cosmology, Zachary Cohen

Honors Scholar Theses

The advent of General Relativity via Einstein's field equations revolutionized our understanding of gravity in our solar system and universe. The idea of General Relativity posits that gravity is entirely due to the geometry of the universe -- that is, the mass distribution throughout the universe results in the ``curving" of spacetime, which gives us the physics we see on a large scale. In the framework of General Relativity, we find that the universe behaves differently than was predicted in the model of gravitation developed by Newton. We will derive the general relativistic model for a simple system near a …


Geophysical Constraints On The Hueco And Mesilla Bolsons: Structure And Geometry, Victor Manuel Avila Jan 2016

Geophysical Constraints On The Hueco And Mesilla Bolsons: Structure And Geometry, Victor Manuel Avila

Open Access Theses & Dissertations

The Hueco and Mesilla Bolsons are part of the intramountain basins of the Rio Grande Rift system. These bolsons are the primary source of groundwater for the El Paso-Ciudad Juarez metropolitan area and contain faults that show evidence of repeated earthquakes during the Quaternary. The region is also associated with has low-level (M<4) seismicity. The collection and analysis of precision gravity data, coupled with information from water wells, multichannel analysis of surface waves (MASW) studies and previously published seismic reflection lines, have been used to examine the structure and faulting within these bolson. This study reveals that the Hueco and Mesilla Bolsons are very different structurally. The southern Mesilla Bolson contains about 500 m of sediment. Faults are difficult to trace and have less than 50-100 m of displacement across them. The southernmost bolson contains numerous Tertiary intrusions and the thickness of Cretaceous bedrock appears to decrease from south to north, possibly delineating the edge of Laramide age deformation within the bolson. The northern Hueco Bolson contains 1800 to 2500 m of basin fill. Displacement along the East Franklin Mountains fault (EFMF), a fault with evidence for repeated earthquakes within the past 64,000 years, is about 1500 m, and displacement on intrabasin faults is 200-300 m. Several intrabasin faults appear to control the saline to freshwater contact within the bolson. The EFMF may extend over 30 km south of the end of its mapped trace at the end of the Franklin Mountains and a number of intrabasin faults also extend south into the urbanized regions of the study area. The EFMF and other basin structures appear to be offset or disrupted at the speculated edge of Laramide deformation that lies beneath the bolson. Horizontal Gradient Methods (HGM) were applied to the gravity data and were successful for tracing faults and older Laramide features within the Hueco Bolson beneath the urbanized regions of the cities. HGM were not as successful at tracing faults within the Mesilla Bolson, however they were helpful for tracing the subsurface extent of igneous intrusions including the Mt. Cristo Rey, River, Three Sisters, and the Westerner outcrops. Some of these features appear linked at depth by a series of dikes and faults. MASW data were used to determine the average shear wave velocity in the upper 30m (Vs 30) at ~70 sites within the Hueco Bolson. These observations were combined with similar data collected previously in Juarez to produce regional velocity and site classification maps. The results show low velocities are found close to the river within fluvial deposits with higher velocities close to the Franklin Mountains where bedrock is close to the surface and higher velocities in upland regions of northeast El Paso were soils appear to be more highly cemented. These data will be used in conjunction with information on bolson geometries to model the expected effects of strong ground motion from earthquakes in the El Paso-Ciudad Juarez region.


Neutron Stars: Compact Objects With Relativistic Gravity, Kazim Yavuz Ekşi̇ Jan 2016

Neutron Stars: Compact Objects With Relativistic Gravity, Kazim Yavuz Ekşi̇

Turkish Journal of Physics

General properties of neutron stars are briefly reviewed with an emphasis on the indispensability of general relativity in our understanding of these fascinating objects. In Newtonian gravity the pressure within a star merely plays the role of opposing self-gravity. In general relativity all sources of energy and momentum contribute to the gravity. As a result, the pressure not only opposes gravity but also enhances it. The latter role of pressure becomes more pronounced with increasing compactness, $M/R$, where $M$ and $R$ are the mass and radius of the star, and sets a critical mass beyond which collapse is inevitable. This …