Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Gravity

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 118

Full-Text Articles in Physical Sciences and Mathematics

Particle Dynamics In Anti-De Sitter Space By Eih Method, Jiusi Lei Sep 2020

Particle Dynamics In Anti-De Sitter Space By Eih Method, Jiusi Lei

All Dissertations, Theses, and Capstone Projects

Following the work of Einstein, Infeld and Hoffmann, we show that particle dynamics in Anti-de Sitter spacetime can be built up by regarding singularities in spacetime manifold as the source of particles.

Since gauge fields play a foundational role in the action, the singularities are chosen to be point-like instantons. Their winding number, defined by an integration on the spheres surrounding those singularities, will turn out to be related to their masses. And their action, derived from the Chern-Simons forms, will be a co-adjoint orbit action, with group element g ∈ SO(4, 2) describing the collective coordinates of the particle ...


Dynamics And Stability Of The Two Body Problem With Yukawa Correction, Eli Cavan, Ioannis Haranas, Ioannis Gkigkitzis Jan 2020

Dynamics And Stability Of The Two Body Problem With Yukawa Correction, Eli Cavan, Ioannis Haranas, Ioannis Gkigkitzis

Physics and Computer Science Faculty Publications

We explore the dynamics and stability of the two body problem by modifying the Newtonian potential with the Yukawa potential. This model may be considered a theory of modified gravity; where the interaction is not simply the kepler solution for large distance. The stability is investigated by deriving the Jacobian of the linearized matrix equation and evaluating the eigenvalues of the various equilibrium points calculated during the analysis. The subcases of a purely Yukawa and purely Newtonian potential are also explored.


Euclidean Dynamical Triangulations: Running Couplings And Curvature Correlation Functions, Scott David Bassler Dec 2019

Euclidean Dynamical Triangulations: Running Couplings And Curvature Correlation Functions, Scott David Bassler

Dissertations - ALL

Quantum field theories have been incredibly successful at describing many fundamental aspects of reality with great precision, sometimes relying on the powerful computational tool of lattice methods. Gravity has so far eluded a quantum field theory description, leading many to consider alternate theories like String Theory. However, recent results in lattice quantum gravity have brought some renewed interest in the subject. After reviewing the progress made so far in Euclidean Dynamical Triangulations, a lattice theory of gravity, we examine how the couplings of the theory run with scale. We find that the dimensionless couplings $\hat{G}$ and $\hat{\Lambda}$ are ...


Retrieval Of Intrinsic Mesospheric Gravity Wave Parameters Using Lidar And Airglow Temperature And Meteor Radar Wind Data, Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, Rigel Kivi Nov 2019

Retrieval Of Intrinsic Mesospheric Gravity Wave Parameters Using Lidar And Airglow Temperature And Meteor Radar Wind Data, Robert Reichert, Bernd Kaifler, Natalie Kaifler, Markus Rapp, Pierre-Dominique Pautet, Michael J. Taylor, Alexander Kozlovsky, Mark Lester, Rigel Kivi

Publications

We analyse gravity waves in the upper-mesosphere, lower-thermosphere region from high-resolution temperature variations measured by the Rayleigh lidar and OH temperature mapper. From this combination of instruments, aided by meteor radar wind data, the full set of ground-relative and intrinsic gravity wave parameters are derived by means of the novel WAPITI (Wavelet Analysis and Phase line IdenTIfication) method. This WAPITI tool decomposes the gravity wave field into its spectral component while preserving the temporal resolution, allowing us to identify and study the evolution of gravity wave packets in the varying backgrounds. We describe WAPITI and demonstrate its capabilities for the ...


An Introduction To Shape Dynamics, Patrick R. Kerrigan Nov 2019

An Introduction To Shape Dynamics, Patrick R. Kerrigan

Physics

Shape Dynamics (SD) is a new fundamental framework of physics which seeks to remove any non-relational notions from its methodology. importantly it does away with a background space-time and replaces it with a conceptual framework meant to reflect direct observables and recognize how measurements are taken. It is a theory of pure relationalism, and is based on different first principles then General Relativity (GR). This paper investigates how SD assertions affect dynamics of the three body problem, then outlines the shape reduction framework in a general setting.


Yang-Mills Sources For Biconformal Gravity, Walter Davis Muhwezi Aug 2019

Yang-Mills Sources For Biconformal Gravity, Walter Davis Muhwezi

Physics Capstone Projects

We present a gauge formulation of Yang-Mills matter sources for Biconformal gravity. Biconformal gravity is a 2n-dimensional conformal gauge theory with a curvature linear action that has been shown to reproduce scale invariant general relativity on the cotangent bundle of n-dimensional space time. We present a generalization of Yang-Mills theories in biconformal space and show that the field equations with sources reduce the Yang-Mills sector to n-dimensional Yang-Mills theory in curved spacetime. We compute the restrictive conditions on the energy-momentum tensor required by the gravitational field equations.


What Do We Know About Lorentz Symmetry?, Q. G. Bailey Jun 2019

What Do We Know About Lorentz Symmetry?, Q. G. Bailey

Quentin Bailey

Precision tests of Lorentz symmetry have become increasingly of interest to the broader gravitational and high-energy physics communities. In this talk, recent work on violations of local Lorentz invariance in gravity is discussed, including recent analysis constraining Lorentz violation in a variety of gravitational tests. The arena of short-range tests of gravity is highlighted, demonstrating that such tests are sensitive to a broad class of unexplored signals that depend on sidereal time and the geometry of the experiment.


Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al. Jun 2019

Constraints On Sme Coefficients From Lunar Laser Ranging, Very Long Baseline Interferometry, And Asteroid Orbital Dynamics, C. Le Poncin-Lafitte, A. Bourgoin, A. Hees, S. Bouquillon, S. Lambert, Q. G. Bailey, Et Al.

Quentin Bailey

Lorentz symmetry violations can be parametrized by an effective field theory framework that contains both General Relativity and the Standard Model of particle physics, called the Standard-Model Extension or SME. We consider in this work only the pure gravitational sector of the minimal SME. We present new constraints on the SME coefficients obtained from lunar laser ranging, very long baseline interferometry, and planetary motions.


Gravity Sector Of The Sme, Q. G. Bailey Jun 2019

Gravity Sector Of The Sme, Q. G. Bailey

Quentin Bailey

In this talk, the gravity sector of the effective field theory description of local Lorentz violation is discussed, including minimal and nonminimal curvature couplings. Also, recent experimental and observational analyses including solar-system ephemeris and short-range gravity tests are reviewed.


Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor May 2019

Quantifying Complex Systems Via Computational Fly Swarms, Troy Taylor

Senior Theses

Complexity is prevalent both in natural and in human-made systems, yet is not well understood quantitatively. Qualitatively, complexity describes a phenomena in which a system composed of individual pieces, each having simple interactions with one another, results in interesting bulk properties that would otherwise not exist. One example of a complex biological system is the bird flock, in particular, a starling murmuration. Starlings are known to move in the direction of their neighbors and avoid collisions with fellow starlings, but as a result of these simple movement choices, the flock as a whole tends to exhibit fluid-like movements and form ...


Geophysical Analysis Of The Midcontinent Rift’S Subsurface Structure In Southeastern Nebraska, Patrick Szopinski Mar 2019

Geophysical Analysis Of The Midcontinent Rift’S Subsurface Structure In Southeastern Nebraska, Patrick Szopinski

Honors Theses, University of Nebraska-Lincoln

The Midcontinent Rift System (MCRS) is a 1.1 billion-year-old failed rift system that spans much of the North American continental interior. The MCRS is exposed at Lake Superior and is buried in the subsurface along its southwest-extending arm through southeastern Nebraska. Due to the presence of buried volcanic rocks, the MCRS has characteristic highly-pronounced potential field anomalies (gravity and magnetic). Despite these large anomalies, not much is known about the subsurface faulting associated with the rift zone in the Midwest. The goal of this project is to attempt to use integrated analysis of collected geophysical data from multiple methods ...


What Causes Black Holes To Spin?, Mac B. Selesnick Jan 2019

What Causes Black Holes To Spin?, Mac B. Selesnick

Senior Projects Spring 2019

Black holes are recently at the cutting edge of cosmological and astrophysical research. Both experiment and theory are leading to surprising conclusions on the physical properties of black holes and their affects on space and time. In this project, I set out to explore the origin and mechanics of a black hole's spin, that is, its internal angular momentum. What causes a black hole to spin in the first place is rich and nuanced. In order to make this project accessible and focused I explore the process of a minor merger, a collision between two black holes, one large ...


Integrated Seismic-Reflection And Microgravity Imaging Across The Southern Boundary Of The Charleston Uplift, New Madrid Seismic Zone, Usa, Drew D. Burford Jr. Jan 2019

Integrated Seismic-Reflection And Microgravity Imaging Across The Southern Boundary Of The Charleston Uplift, New Madrid Seismic Zone, Usa, Drew D. Burford Jr.

Theses and Dissertations--Earth and Environmental Sciences

The Charleston Uplift (CU), a 30-km-long by 7-km-wide, N46°E-oriented subsurface geologic anomaly in the northern Mississippi embayment near Charleston, Missouri, exhibits up to 36 m of vertical relief across the Paleogene/Quaternary unconformity. Subsurface structural relief, along with the CU’s coincident boundary alignment with contemporary microseismicity and the New Madrid North Fault (NMNF), suggest a structural origin. Subsequent seismic soundings indicate vertical structural relief is present in Cretaceous and Paleozoic horizons, supporting the fault-controlled origin. The southern boundary (CU-s) had not been investigated, nor had any direct fault images been acquired. Integrated microgravity and seismic-reflection methods across the ...


Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh Jan 2019

Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh

Electronic Theses and Dissertations

We use the Teukolsky formalism to calculate the gravitational radiation from a non-axi\-symmetric cloud formed due to superradiant amplification of a spin-0 bosonic field. We focus on the prospects of the future space-based gravitational wave detector, Laser Interferometer Space Antenna (LISA), and the current version of ground-based detector, Advanced Laser Interferometer Gravitational-Wave Observatory (AdLIGO), to detect or constrain scalars with mass in the range $m_s\in [10^{-19},10^{-15}]$ eV and $m_s\in[10^{-14},10^{-11}]$ eV, respectively. Using astrophysical models of black hole populations calibrated to observations we find that, in optimistic scenarios, AdLIGO could detect ...


Question 1: Clock Variation; Question 2: Recycling Coffee Pods, Larry Weinstein Dec 2018

Question 1: Clock Variation; Question 2: Recycling Coffee Pods, Larry Weinstein

Physics Faculty Publications

The article presents questions and answers regarding the impact of gravity on pendulum clocks and the recycling of coffee pods.


Gravity's Light In The Shadow Of The Moon, Andri Gretarsson, Preston Jones, Douglas Singleton Oct 2018

Gravity's Light In The Shadow Of The Moon, Andri Gretarsson, Preston Jones, Douglas Singleton

Publications

In this essay we look at the possibility of vacuum production of very low frequency electromagnetic radiation from a gravitational wave background (i.e. gravity's light). We also propose that this counterpart electromagnetic radiation should be detectable by a lunar orbiting satellite which is periodically occulted by the Moon (i.e., in the shadow of the Moon). For concreteness we consider the possibility of detection of both the gravitational wave and hypothesized electromagnetic radiation counterpart from the supernova core collapse of Betelgeuse


Relating Noncommutative So(2,3)* Gravity To The Lorentz-Violating Standard-Model Extension, Quentin G. Bailey, Charles D. Lane Oct 2018

Relating Noncommutative So(2,3)* Gravity To The Lorentz-Violating Standard-Model Extension, Quentin G. Bailey, Charles D. Lane

Publications

We consider a model of noncommutative gravity that is based on a spacetime with broken local SO(2,3)* symmetry. We show that the torsion-free version of this model is contained within the framework of the Lorentz-violating Standard-Model Extension (SME). We analyze in detail the relation between the torsion-free, quadratic limits of the broken SO(2,3)* model and the Standard-Model Extension. As part of the analysis, we construct the relevant geometric quantities to quadratic order in the metric perturbation around a flat background.


A Geophysical Delineation Of A Normal Fault Within The Gulf Coastal Plain, Montgomery County, Texas, Danielle Minteer May 2018

A Geophysical Delineation Of A Normal Fault Within The Gulf Coastal Plain, Montgomery County, Texas, Danielle Minteer

Electronic Theses and Dissertations

The Gulf Coast of Texas has been a known hydrocarbon basin for many years with various structural trapping mechanisms such as anticlines, faults and salt domes. While most large salt domes have been extensively studied in the Gulf Coastal Plain, many smaller normal faults have not been studied in detail. This research study employs an integrated geophysical approach to mapping the Big Barn fault in Montgomery County, Texas. This fault is located on the Gulf Coastal Plain and is approximately 20 miles north of Houston, Texas. Most normal faults in the Gulf Coastal Plain formed as a result of the ...


Gravity Then And Now, Paul Ingraham Apr 2018

Gravity Then And Now, Paul Ingraham

Student Writing

This paper discusses the theory of gravity from the time it was discovered by Sir Isaac Newton to present time with the discovery of gravitational waves by Albert Einstein, and the detection of gravitational waves. Stephen Hawking's and Leonard Mlodinow's recent book, The Grand Design, provides support for Edward Witten's M-theory. Gravity was the first of the four fundamental forces to be discovered, and that last to be detected. Einstein proposed that gravity was not only a force, but also could be characterized as a wave on the space-time continuum.


Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al. Feb 2018

Gw170817: Implications For The Stochastic Gravitational-Wave Background From Compact Binary Coalescences, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f=25 ...


General Relativity, 3, David Peak Jan 2018

General Relativity, 3, David Peak

General Relativity

Gravity as geometry: part II

Even in a region of space-time that is so small that tidal effects cannot be detected, gravity still seems to produce curvature. The argument for this point of view starts with the recognition that, for mechanical systems, it is impossible to distinguish a frame of reference with a uniform gravitational field from a uniformly accelerating frame that has no gravity. Thus, for example, in a (small) rocket ship with no windows it is not possible to determine whether the weight one reads standing on a scale at the tail of the rocket is due to ...


Determing Fault Location Within An Active Rift Basin Using Gravity Analysis To Determine Fault Movemnet And Effect On Water Recharge, Mark Andrew Ornelas Jan 2018

Determing Fault Location Within An Active Rift Basin Using Gravity Analysis To Determine Fault Movemnet And Effect On Water Recharge, Mark Andrew Ornelas

Open Access Theses & Dissertations

The growth of the El Paso, TX and Ciudad Juárez, Chihuahua, metropolitan area has increased reliance of groundwater pumping from the Hueco Bolson. With growing demands for water and recharge of the bolson not occurring at a fast enough rate, water storage within the bolson is beginning to diminish. My study focuses on locating and understanding how faults interact with water flow into the basin and how they aid in storing water on the northwestern side of the bolson. Previous studies in the northernmost part of my study area have delineated a series of faults that predominantly trend northwest-southeast. In ...


Investigating The Opal Cubesat’S Ability To Measure Thermospheric Gravity Waves, Kenneth Zia, Michael J. Taylor, Ludger Scherliess Jan 2018

Investigating The Opal Cubesat’S Ability To Measure Thermospheric Gravity Waves, Kenneth Zia, Michael J. Taylor, Ludger Scherliess

Posters

Understanding the Earth’s lower thermosphere is of high interest to the space science community because of competing forcing due to solar heating above and episodic wave forcing from below. The NSF sponsored OPAL cubesat is designed to measure the temperature profile in this region by observing day-time O2 A time O2 A-band (~760nm) emission on the limb and is expected to be launched from the ISS (International Space Station). To band (~760nm) emission on the limb and is expected to be launched from the ISS (International Space Station). To investigate the instrument’s ability to detect space weather signatures ...


A Gravitational-Wave Standard Siren Measurement Of The Hubble Constant, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarrson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalde, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al. Nov 2017

A Gravitational-Wave Standard Siren Measurement Of The Hubble Constant, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarrson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalde, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

The detection of GW170817 (Abbott et al. 2017a) in both gravitational waves and electromagnetic waves heralds the age of gravitational-wave multi-messenger astronomy. On 17 August 2017 the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) (LIGO Scientific Collaboration et al. 2015) and Virgo (Acernese et al. 2015) detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than 2 seconds after the merger, a gamma-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source (Abbott et al. 2017b; Goldstein et al. 2017; Savchenko et al. 2017 ...


Aeromagnetic, Gravity, And Differential Interferometric Synthetic Aperture Radar Analyses Reveal The Causative Fault Of The 3 April 2017 MW 6.5 Moiyabana, Botswana, Earthquake, Folarin Kolawole, Estella A. Atekwana, S. Malloy, Dorothy Sarah Stamps, Raphael Grandin, Mohamed G. Abdel Salam, Khumo Leseane, Elisha M. Shemang Sep 2017

Aeromagnetic, Gravity, And Differential Interferometric Synthetic Aperture Radar Analyses Reveal The Causative Fault Of The 3 April 2017 MW 6.5 Moiyabana, Botswana, Earthquake, Folarin Kolawole, Estella A. Atekwana, S. Malloy, Dorothy Sarah Stamps, Raphael Grandin, Mohamed G. Abdel Salam, Khumo Leseane, Elisha M. Shemang

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

On 3 April 2017, a Mw 6.5 earthquake struck Moiyabana, Botswana, nucleating at >20 km focal depth within the Paleoproterozoic Limpopo-Shashe orogenic belt separating the Archean Zimbabwe and Kaapvaal Cratons. We investigate the lithospheric structures associated with this earthquake using high-resolution aeromagnetic and gravity data integrated with Differential Interferometric Synthetic Aperture Radar (DInSAR) analysis. Here we present the first results that provide insights into the tectonic framework of the earthquake. The ruptured fault trace delineated by DInSAR aligns with a distinct NW striking and NE dipping magnetic lineament within the Precambrian basement. The fault plane solution and numerical ...


Gravity & Electromagnetism On The Null Cone, Maria Babiuc-Hamilton Jul 2017

Gravity & Electromagnetism On The Null Cone, Maria Babiuc-Hamilton

Maria C. Babiuc-Hamilton

Gravitational and electromagnetic radiation travel along light rays, which are principal null directions in space-time. They are characteristic surfaces of Einstein and Maxwell equations. In characteristic coordinates, the field is described by ordinary differential equations.


Lithospheric Evaluation Of The Mid-Continental Rift System In Iowa From A Gravity And Magnetic Analysis, Moamen Mohamed Almaz May 2017

Lithospheric Evaluation Of The Mid-Continental Rift System In Iowa From A Gravity And Magnetic Analysis, Moamen Mohamed Almaz

MSU Graduate Theses

The Proterozoic Midcontinent Rift System (MCRS) is considered one of the most important tectonic features in North America and was formed during a continental breakup event at 1.1 Ga (billion years). The MCRS is totally covered by Phanerozoic sedimentary rocks except in the Lake Superior region. Consequently, the geological characteristics of the MCRS are primarily inferred from extrapolations from the outcrop areas, drill holes, and from a variety of geophysical investigations. Iowa has a large segment of the MCRS which to date has only been partially investigated geophysically with little information regarding the lower crustal and upper mantle structure ...


A Geophysical Analysis Of The Great Falls Tectonic Zone And The Surrounding Area, Montana Usa, Travis Lane Fultz May 2017

A Geophysical Analysis Of The Great Falls Tectonic Zone And The Surrounding Area, Montana Usa, Travis Lane Fultz

MSU Graduate Theses

The Great Falls Tectonic Zone (GFTZ) is a northeast trending zone of high angle faults and lineaments extending from northeastern Idaho into Saskatchewan, Canada. The GFTZ is believed to have facilitated the collision between the Archean Wyoming and Hearne cratons. Previous geophysical studies have analyzed seismic refraction data across the boundary between the Paleoproterozoic GFTZ and Archean Wyoming Craton (WC), this indicated the lower crustal layer thickens as it dips beneath the boundary towards the WC. In this study, three 2 dimensional (2D) gravity models that crossed the central region of the GFTZ were produced using constraints from existing geologic ...


Gravity And Passive Seismic Methods Used Jointly For Understanding The Subsurface In A Glaciated Terrain: Dowling And Maple Grove Quadrangles, Barry County, Michigan, Feldpausch Apr 2017

Gravity And Passive Seismic Methods Used Jointly For Understanding The Subsurface In A Glaciated Terrain: Dowling And Maple Grove Quadrangles, Barry County, Michigan, Feldpausch

Master's Theses

The Horizontal to Vertical Spectral Ratio (HVSR) passive, single sensor seismic technique has been used together with gravimetry to study the topography hidden below the glacial drift of two 7.5’ quadrangles in Barry Co., MI. 265 stations were observed with both instruments along roads at nominal spacings of about 0.4 to 0.8 km. Occasional water wells and oil wells with documented penetrations of the base of glacial were used to calibrate the local power law regression calibration. This was also compared with the statewide calibration curve previously established. Results are presented as maps of Simple Bouguer Anomaly ...


Unification Of Gravity And Quantum Theory, Adam Daniels Jan 2017

Unification Of Gravity And Quantum Theory, Adam Daniels

Faculty-Sponsored Student Research

An overview of the four fundamental forces of physics as described by the Standard Model (SM) and prevalent unifying theories beyond it is provided. Background knowledge of the particles governing the fundamental forces is provided, as it will be useful in understanding the way in which the unification efforts of particle physics has evolved, either from the SM, or apart from it. It is shown that efforts to provide a quantum theory of gravity have allowed supersymmetry (SUSY) and M-Theory to become two of the prevailing theories for unifying gravity with the remaining non-gravitational forces.