Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Viscosity Dependent Liquid Slip At Molecularly Smooth Hydrophobic Surfaces, Sean P. Mcbride, Bruce M. Law Oct 2016

Viscosity Dependent Liquid Slip At Molecularly Smooth Hydrophobic Surfaces, Sean P. Mcbride, Bruce M. Law

Dr. Sean P. McBride

Colloidal probe atomic force microscopy is used to study the slip behavior of 18 Newtonian liquids from two homologous series, the n-alkanes and n-alcohols, at molecularly smooth hydrophobic n-hexadecyltrichlorosilane coated surfaces. We find that the slip behavior is governed by the bulk viscosity η of the liquid, specifically, the slip length b∼ηx with x∼0.33. Additionally, the slip length was found to be shear rate independent, validating the use of Vinogradova slip theory in this work.


Improved In Situ Spring Constant Calibration For Colloidal Probe Atomic Force Microscopy, Sean P. Mcbride, Bruce M. Law Oct 2016

Improved In Situ Spring Constant Calibration For Colloidal Probe Atomic Force Microscopy, Sean P. Mcbride, Bruce M. Law

Dr. Sean P. McBride

In colloidal probe atomic force microscopy (AFM) surface forces cannot be measured without an accurate determination of the cantilever spring constant. The effective spring constant k depends upon the cantilever geometry and therefore should be measured in situ; additionally, k may be coupled to other measurement parameters. For example, colloidal probe AFM is frequently used to measure the slip length b at solid/liquid boundaries by comparing the measured hydrodynamic force with Vinogradova slip theory (V-theory). However, in this measurement k and b are coupled, hence, b cannot be accurately determined without knowing k to high precision. In this paper, a …


Influence Of Line Tension On Spherical Colloidal Particles At Liquid-Vapor Interfaces, Sean P. Mcbride, Bruce M. Law Oct 2016

Influence Of Line Tension On Spherical Colloidal Particles At Liquid-Vapor Interfaces, Sean P. Mcbride, Bruce M. Law

Dr. Sean P. McBride

Atomic force microscopy (AFM) imaging of isolated submicron dodecyltrichlorosilane coated silica spheres, immobilized at the liquid polystyrene- (PS-) air interface at the PS glass transition temperature, Tg , allows for determination of the contact angle θ versus particle radius R . At Tg , all θ versus R measurements are well described by the modified Young’s equation for a line tension τ=0.93  nN . The AFM measurements are also consistent with a minimum contact angle θmin and minimum radius Rmin , below which single isolated silica spheres cannot exist at the PS-air interface.


Long Reach Cantilevers For Sub-Cellular Force Measurements, Govind Paneru, Prem S. Thapa, Sean P. Mcbride Sep 2016

Long Reach Cantilevers For Sub-Cellular Force Measurements, Govind Paneru, Prem S. Thapa, Sean P. Mcbride

Dr. Sean P. McBride

Maneuverable, high aspect ratio poly 3-4 ethylene dioxythiophene (PEDOT) fibers are fabricated for use as cellular force probes that can interface with individual pseudopod adhesive contact sites without forming unintentional secondary contacts to the cell. The straight fibers have lengths between 5 and 40 μm and spring constants in the 0.07-23.2 nN μm-1 range. The spring constants of these fibers were measured directly using an atomic force microscope (AFM). These AFM measurements corroborate determinations based on the transverse vibrational resonance frequencies of the fibers, which is a more convenient method. These fibers are employed to characterize the time dependent forces …


Polarization Dependent Switching Of Asymmetric Nanorings With A Circular Field, Nihar R. Pradhan, Mark T. Tuominen, Katherine E. Aidala Jan 2016

Polarization Dependent Switching Of Asymmetric Nanorings With A Circular Field, Nihar R. Pradhan, Mark T. Tuominen, Katherine E. Aidala

Physics Department Faculty Publication Series

We experimentally investigated the switching from onion to vortex states in asymmetric cobalt nanorings by an applied circular field. An in-plane field is applied along the symmetric or asymmetric axis of the ring to establish domain walls (DWs) with symmetric or asymmetric polarization. A circular field is then applied to switch from the onion state to the vortex state, moving the DWs in the process. The asymmetry of the ring leads to different switching fields depending on the location of the DWs and direction of applied field. For polarization along the asymmetric axis, the field required to move the DWs …


Studies Of The Properties Of Designed Nanoparticles Using Atomic Force Microscopy, Steve Matthew Deese Jan 2016

Studies Of The Properties Of Designed Nanoparticles Using Atomic Force Microscopy, Steve Matthew Deese

LSU Doctoral Dissertations

The purpose of the research in this dissertation was to elucidate the intrinsic properties of how nanoparticles are different from bulk materials. This was done by mechanical and electronic studies of the properties of designed nanoparticles using advanced modes of atomic force microscopy. Information relating to the work functions, contact potential difference, Young’s Moduli, elasticity, and viscoelasticity can be investigated using state-of-the-art atomic force microscope (AFM) experiments. Subsurface imaging of polystyrene encapsulated cobalt nanoparticles was achieved for the first time using Force Modulation Microscopy (FMM) in conjunction with contact mode AFM. Previously prepared sample of polystyrene coated cobalt nanoparticles were …