Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Systematic Analysis Of Double-Ionization Dynamics Based On Four-Body Dalitz Plots, Daniel Fischer, Michael Schulz, Katharina R. Schneider, Marcelo F. Ciappina, Tom Kirchner, Aditya H. Kelkar, S. Hagman, Manfred Grieser, Kai Uwe Kuhnel, Robert Moshammer, Joachim Hermann Ullrich Dec 2009

Systematic Analysis Of Double-Ionization Dynamics Based On Four-Body Dalitz Plots, Daniel Fischer, Michael Schulz, Katharina R. Schneider, Marcelo F. Ciappina, Tom Kirchner, Aditya H. Kelkar, S. Hagman, Manfred Grieser, Kai Uwe Kuhnel, Robert Moshammer, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

We report on an experimental and theoretical systematic study of double ionization of helium by ion impact in terms of four-particle Dalitz plots. Several collision systems covering abroad range of perturbation parameters η (projectile charge to speed ratio) were investigated. With increasing η we observe a systematic trend from features, characteristic to correlated double-ionization mechanisms, to signatures of higher-order processes not requiring electron-electron correlations [the mechanism called "two-step-two projectile-electron interaction" (TS-2)]. The data for the largest η can qualitatively be amazingly well described by a simple model only including the TS-2 mechanism.


Four-Body Model For Transfer Excitation, Allison L. Harris, Jerry Peacher, Don H. Madison, James Colgan Dec 2009

Four-Body Model For Transfer Excitation, Allison L. Harris, Jerry Peacher, Don H. Madison, James Colgan

Physics Faculty Research & Creative Works

We present here a four-body model for transfer-excitation collisions, which we call the four-body transfer-excitation (4BTE) model. Each two-body interaction is explicitly included in the 4BTE model, allowing us to study the effects of individual two-body interactions. We apply our model to fully differential cross sections for proton+helium collisions, and study the effect of the incident projectile-atom interaction, the scattered projectile-ion interaction, the projectile-nuclear interaction, and electron correlation within the target atom.


Sdss J102347.6+003841: A Millisecond Radio Pulsar Binary That Had A Hot Disk During 2000-2001, Zhongxiang Wang, Anne M. Archibald, John R. Thorstensen, Victoria M. Kaspi Oct 2009

Sdss J102347.6+003841: A Millisecond Radio Pulsar Binary That Had A Hot Disk During 2000-2001, Zhongxiang Wang, Anne M. Archibald, John R. Thorstensen, Victoria M. Kaspi

Dartmouth Scholarship

The Sloan Digital Sky Survey (SDSS) source J102347.6+003841 was recently revealed to be a binary 1.69 ms radio pulsar with a 4.75 hr orbital period and a ~0.2 M companion. Here, we analyze the SDSS spectrum of the source in detail. The spectrum was taken on 2001 February 1, when the source was in a bright state and showed broad, double-peaked hydrogen and helium lines—dramatically different from the G-type absorption spectrum seen from 2002 May onward. The lines are consistent with emission from a disk around the compact primary. We derive properties of the disk by fitting the SDSS …


Feasibility Of Coherent Xuv Spectroscopy On The 1s-2s Transition In Singly Ionized Helium, Maximilian Herrmann, Martin K. Haas, Ulrich D. Jentschura, Franz Kottmann, Dietrich Leibfried, Guido Saathoff, Christoph Gohle, Akira Ozawa, V. Batteiger, S. Knunz, Nikolai N. Kolachevsky, H. A. Schussler, Theodor Wolfgang Hansch, Th H. Udem May 2009

Feasibility Of Coherent Xuv Spectroscopy On The 1s-2s Transition In Singly Ionized Helium, Maximilian Herrmann, Martin K. Haas, Ulrich D. Jentschura, Franz Kottmann, Dietrich Leibfried, Guido Saathoff, Christoph Gohle, Akira Ozawa, V. Batteiger, S. Knunz, Nikolai N. Kolachevsky, H. A. Schussler, Theodor Wolfgang Hansch, Th H. Udem

Physics Faculty Research & Creative Works

The 1S-2S two-photon transition in singly ionized helium is a highly interesting candidate for precision tests of bound-state quantum electrodynamics (QED). With the recent advent of extreme ultraviolet frequency combs, highly coherent quasi-continuous-wave light sources at 61 nm have become available, and precision spectroscopy of this transition now comes into reach for the first time. We discuss quantitatively the feasibility of such an experiment by analyzing excitation and ionization rates, propose an experimental scheme, and explore the potential for QED tests.