Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2005

Atomic, Molecular and Optical Physics

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 41

Full-Text Articles in Physical Sciences and Mathematics

Dynamical Control Of Qubit Coherence: Random Versus Deterministic Schemes, Lea F. Santos, Lorenza Viola Dec 2005

Dynamical Control Of Qubit Coherence: Random Versus Deterministic Schemes, Lea F. Santos, Lorenza Viola

Dartmouth Scholarship

We reexamine the problem of switching off unwanted phase evolution and decoherence in a single two-state quantum system in the light of recent results on random dynamical decoupling methods [L. Viola and E. Knill, Phys. Rev. Lett. 94, 060502 (2005)]. A systematic comparison with standard cyclic decoupling is effected for a variety of dynamical regimes, including the case of both semiclassical and fully quantum decoherence models. In particular, exact analytical expressions are derived for randomized control of decoherence from a bosonic environment. We investigate quantitatively control protocols based on purely deterministic, purely random, as well as hybrid design, and …


Klein Paradox With Spin-Resolved Electrons And Positrons, P Krekora, Q Su, Rainer Grobe Dec 2005

Klein Paradox With Spin-Resolved Electrons And Positrons, P Krekora, Q Su, Rainer Grobe

Faculty publications – Physics

Using numerical solutions to relativistic quantum field theory with space-time resolution, we illustrate how an incoming electron wave packet with a definite spin scatters off a supercritical potential step. We show that the production rate is reduced of only those electrons that have the same spin as the incoming electron is reduced. This spin-resolved result further clarifies the importance of the Pauli-exclusion principle for the Klein paradox.


Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto Dec 2005

Multivalued Logic, Neutrosophy And Schrodinger Equation, Florentin Smarandache, Victor Christianto

Branch Mathematics and Statistics Faculty and Staff Publications

This book was intended to discuss some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and a recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of ‘identity’, which too often it has been accepted as given. Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. While some aspects of theoretical foundations of logic are discussed, this book is not intended solely for pure mathematicians, but instead for physicists in the hope that some of ideas presented herein will be found useful. The book is motivated by …


Using Ultrasonic Atomization To Produce An Aerosol Of Micron-Scale Particles, Thomas D. Donnelly, J. Hogan '03, A. Mugler '04, M. Schubmehl '02, N. Schommer '04, Andrew J. Bernoff, S. Dasnurkar, T. Ditmire Nov 2005

Using Ultrasonic Atomization To Produce An Aerosol Of Micron-Scale Particles, Thomas D. Donnelly, J. Hogan '03, A. Mugler '04, M. Schubmehl '02, N. Schommer '04, Andrew J. Bernoff, S. Dasnurkar, T. Ditmire

All HMC Faculty Publications and Research

A device that uses ultrasonic atomization of a liquid to produce an aerosol of micron-scale droplets is described. This device represents a new approach to producing targets relevant to laser-driven fusion studies, and to rare studies of nonlinear optics in which wavelength-scale targets are irradiated. The device has also made possible tests of fluid dynamics models in a novel phase space. The distribution of droplet sizes produced by the device and the threshold power required for droplet production are shown to follow scaling laws predicted by fluid dynamics.


Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov Nov 2005

Alignment Dynamics Of Slow Light Diffusion In Ultracold Atomic 85Rb, S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, D. V. Kupriyanov

Physics Faculty Publications

A combined experimental and theoretical investigation of time- and alignment-dependent propagation of light in an ultracold atomic gas of atomic 85Rb is reported. Coherences among the scattering amplitudes for light scattering off excited hyperfine levels produce strong variations of the light polarization in the vicinity of atomic resonance. Measurements are in excellent agreement with Monte Carlo simulations of the multiple scattering process.


Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson Oct 2005

Progress Towards Terahertz Acoustic Phonon Generation In Doping Superlattices, Thomas E. Wilson

Physics Faculty Research

Progress is described in experiments to generate coherent terahertz acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation. Future experiments are proposed that would use the superlattice as a transducer in a terahertz cryogenic acoustic reflection microscope with sub-nanometer resolution.


Simulation Of Ultrashort Laser Pulse Propagation With High-Order Dispersion, Raman Scattering, And Shock Formation, Jeremy Gulley, Erik Zeek, William Dennis Sep 2005

Simulation Of Ultrashort Laser Pulse Propagation With High-Order Dispersion, Raman Scattering, And Shock Formation, Jeremy Gulley, Erik Zeek, William Dennis

Jeremy R. Gulley

No abstract is currently available.


Electron-Impact Ionization Of Hydrogen And Lithiumlike Systems, M A. Uddin, Abul Kalam Fazlul Haque, A K. Basak, Khondkar R. Karim, B C. Saha Sep 2005

Electron-Impact Ionization Of Hydrogen And Lithiumlike Systems, M A. Uddin, Abul Kalam Fazlul Haque, A K. Basak, Khondkar R. Karim, B C. Saha

Faculty publications – Physics

The electron impact single ionization cross sections on a number of targets with atomic number Z=1-92 in the H and Li isoelectronic sequences are calculated using a modified version of the recently propounded relativisitic improved binary-encounter dipole (MRIBED) model [M. A. Uddin , Phys. Rev. A 70, 032706 (2004); 71, 032715 (2005)]. The modified RQIBED (MRIBED) model along with a Z-dependent factor in it is found remarkably successful in the applications to H- and Li-like systems and also valid for the ionization of a filled s orbit including the He-like targets.


Radiative Neutron Β-Decay In Effective Field Theory, Susan Gardner, Véronique Bernard, Chi Zhang Jul 2005

Radiative Neutron Β-Decay In Effective Field Theory, Susan Gardner, Véronique Bernard, Chi Zhang

School of Biological Sciences: Faculty Publications

We consider radiative β-decay of the neutron in heavy baryon chiral perturbation theory. Nucleon-structure effects not encoded in the weak coupling constants gA and gV are determined at next-to-leading order in the chiral expansion, and enter at the O(0.5%)-level, making a sensitive test of the Dirac structure of the weak currents possible.


Soft-Gluon Expansions Through Nnnlo, Nikolaos Kidonakis Jun 2005

Soft-Gluon Expansions Through Nnnlo, Nikolaos Kidonakis

Faculty and Research Publications

I present universal master formulas for soft-gluon corrections to hard-scattering cross sections through next-to-next-to-next-to-leading order (NNNLO). I also briefly discuss applications to some processes where these corrections enhance the cross section and decrease the scale dependence.


Collinear And Soft Resummation In The Large-X Limit, Nikolaos Kidonakis Jun 2005

Collinear And Soft Resummation In The Large-X Limit, Nikolaos Kidonakis

Faculty and Research Publications

I discuss general unified formulas for resumming collinear and soft contributions to QCD hard scattering cross sections at laxge x. Expansions of the resummed cross sections to next-to-next-to-next-to-leading order are also shown along with applications of the formalism.


Top Quark And Charged Higgs Production At Hadron Colliders, Nikolaos Kidonakis May 2005

Top Quark And Charged Higgs Production At Hadron Colliders, Nikolaos Kidonakis

Faculty and Research Publications

I present a brief theoretical update on top quark pair production at the Tevatron and give values of the NNLO-NNNLL cross section for both m_t=175 and 178 GeV. I then present a calculation of the cross section for charged Higgs production in association with a top quark at the LHC, including NNLO soft-gluon corrections.


Charged Higgs Production Via Bg -> Th(-) At The Lhc, Nikolaos Kidonakis May 2005

Charged Higgs Production Via Bg -> Th(-) At The Lhc, Nikolaos Kidonakis

Faculty and Research Publications

I present a calculation of QCD radiative corrections to charged Higgs production via the process bg -> tH-. I show that the cross section is dominated by soft-gluon corrections, which are computed through next-to-next-to-leading order. Results for charged Higgs production at the LHC are presented, including the dependence of the cross section on the charged Higgs mass, the top quark mass, the factorization and renormalization scales, and tan beta.


Photo-Induced Current Measurements In Chlamydomonas Cell Suspensions, Collin D. Capano May 2005

Photo-Induced Current Measurements In Chlamydomonas Cell Suspensions, Collin D. Capano

Honors Capstone Projects - All

In order to fully understand the principles behind phototaxis in flagellate algae, it is necessary to measure the electric currents these cells create when processing light stimuli. Many different techniques have been developed to do this. One of these techniques, measuring from cell suspensions, has a number of advantages over the others that makes it highly desirable. However, the lab that first developed this method of recording did not describe the setup very well. The result is that in the thirteen years since it was first reported, only one other independent lab has been able to reproduce the results despite …


Mechanism For Spatial Organization In Quantum Dot Self-Assembly, Da Gao, Adam Kaczynski, John A. Jaszczak Apr 2005

Mechanism For Spatial Organization In Quantum Dot Self-Assembly, Da Gao, Adam Kaczynski, John A. Jaszczak

Department of Physics Publications

Inspired by experimental observations of spatially ordered growth hillocks on the (001) surfaces of natural graphite crystals, a mechanism for spatial organization in quantum dotself-assembly is proposed. The regular arrangement of steps from a screw dislocation-generated growth spiral provides the overall template for such ordering. An ordered array of quantum dots may be formed or nucleated from impurities driven to the step corners by diffusion and by their interactions with the spiral’s steps and kinks. Kinetic Monte Carlo simulation of a solid-on-solid model supports the feasibility of such a mechanism.


The Straggling Green's Function Method For Ion Transport, Steven Andrew Walker Apr 2005

The Straggling Green's Function Method For Ion Transport, Steven Andrew Walker

Mathematics & Statistics Theses & Dissertations

For many years work has been conducted on developing a concise theory and method for HZE ion transport capable of being validated in the laboratory. Previous attempts have ignored dispersion and energy downshift associated with nuclear fragmentation and energy and range straggling. Here we present a Green's function approach to ion transport that incorporates these missing elements. This work forms the basis for a new version of GRNTRN, a Green's function transport code. Comparisons of GRNTRN predictions and laboratory results for an 56Fe ion beam with average energy at the target of one GeV/amu or more are presented for …


Chapter 12 - Part Ii: A New Way Of Thinking About Achieving And Preserving Peace, Raymond Wilson Mar 2005

Chapter 12 - Part Ii: A New Way Of Thinking About Achieving And Preserving Peace, Raymond Wilson

Raymond Wilson

A concise, clearly written, and comprehensive guide to nuclear science and technology. It is especially valuable in providing a scientifically sound foundation for the many social concerns unleashed by nuclear technology.


Characterizing A Neutron Energy Spectrum Using A "Forward Edge" Neutron Time-Of-Flight Spectroscopy Technique, Jeffrey S. Spear Mar 2005

Characterizing A Neutron Energy Spectrum Using A "Forward Edge" Neutron Time-Of-Flight Spectroscopy Technique, Jeffrey S. Spear

Theses and Dissertations

A Fermi-style thermal neutron disc chopper was designed, constructed, and calibrated in conjunction with a boron-loaded organic scintillator for use in creating a forward edge neutron time-of-flight spectroscopy technique. The forward edge neutron time-of-flight spectroscopy technique inferred the characteristics of a neutron energy spectrum. The system analyzed the spectrum of a moderated and unmoderated PuBe source with the aid of a MATLAB code. Through the use of pulse shape analysis techniques and energy spectroscopy the thermal neutron capture event was identified and isolated. Data analysis provided positive feedback in the disc chopper's ability to partially attenuate higher energy neutrons in …


Classification Of Battlespace Detonations From Temporally Resolved Mutli-Band Imagery And Mid-Infrared Spectra, Anthony N. Dills Mar 2005

Classification Of Battlespace Detonations From Temporally Resolved Mutli-Band Imagery And Mid-Infrared Spectra, Anthony N. Dills

Theses and Dissertations

The classification of battlespace detonations, specifically the determination of munitions type and size using temporal and spectral features, has been studied using near-infrared (NIR) and multi-color visible wavelength imagers. Key features from the time dependence of fireball size are identified for discriminating various types and sizes of detonation flashes. The five classes include three weights of trinitrotoluene (TNT) and two weights of an enhanced mixture, all of which are uncased and detonated with 10% C4. Using Fisher linear discriminant techniques, features are projected onto a line such that the projected points are maximally clustered for the different classes of detonations. …


Selectron Mass Reconstruction And The Resolution Of The Linear Collider Detector, Sharon J. Gerbode, Heath Holguin, Troy Lau, Paul Mooser, Adam Pearlstein, Joe Rose, Bruce Schumm Mar 2005

Selectron Mass Reconstruction And The Resolution Of The Linear Collider Detector, Sharon J. Gerbode, Heath Holguin, Troy Lau, Paul Mooser, Adam Pearlstein, Joe Rose, Bruce Schumm

All HMC Faculty Publications and Research

We have used ISAJET and the JAS LCD fast simulation to explore the precision of Snowmass Point SPS1a selectron mass reconstruction for the Silicon Detector concept. Simulating collisions at E_cm = 1 TeV, we have found that most of the information constraining the selectron mass is carried in the forward (|cos(theta)| > 0.8) region. We have also found that, for a beam energy spread of 1% (conventional RF design), detector resolution limitations compromise the selectron mass reconstruction only in the forward region. However, for a beam energy spread of less than 0.2% (superconducting RF design), the detector resolution compromises the selectron …


Computation Of Electron-Impact K-Shell Ionization Cross Sections Of Atoms, M A. Uddin, Abul Kalam Fazlul Haque, M Masum Billah, A K. Basak, Khondkar R. Karim, B C. Saha Mar 2005

Computation Of Electron-Impact K-Shell Ionization Cross Sections Of Atoms, M A. Uddin, Abul Kalam Fazlul Haque, M Masum Billah, A K. Basak, Khondkar R. Karim, B C. Saha

Faculty publications – Physics

The total cross sections of electron impact single K-shell ionization of atomic targets, with a wide range of atomic numbers from Z=6-50, are evaluated in the energy range up to about 10 MeV employing the recently proposed modified version of the improved binary-encounter dipole (RQIBED) model [Uddin , Phys. Rev. A 70, 032706 (2004)], which incorporates the ionic and relativistic effects. The experimental cross sections for all targets are reproduced satisfactorily even in the relativistic energies using fixed generic values of the two parameters in the RQIBED model. The relativistic effect is found to be significant in all targets except …


Deep Level Defects In Electron-Irradiated Aluminum Gallium Nitride Grown By Molecular Beam Epitaxy, Michael R. Hogsed Mar 2005

Deep Level Defects In Electron-Irradiated Aluminum Gallium Nitride Grown By Molecular Beam Epitaxy, Michael R. Hogsed

Theses and Dissertations

Aluminum gallium nitride (AlGaN)-based devices are attractive candidates for integration into future Air Force communication and sensor platforms, including those that must operate in harsh radiation environments. In this study, the electrical and optical properties of 1.0 MeV electron irradiated n-AlxGa1-xN are characterized for aluminum mole fraction x = 0.0 to 0.3 using deep level transient spectroscopy (DLTS), temperature-dependent Hall, and cathodoluminescence (CL) measurements. Following irradiation of the AlGaN, it is found that four different electron traps are created, having energy levels within 0.4 eV below the conduction band edge. Three of these traps correspond to …


Optical Investigation Of Transition Metal Implanted Wide Band Gap Semiconductors, Brian P. Feller Mar 2005

Optical Investigation Of Transition Metal Implanted Wide Band Gap Semiconductors, Brian P. Feller

Theses and Dissertations

Thin films of GaN, Al0.1Ga0.9N, and ZnO were implanted with Cr, Mn, and nickel Ni to produce dilute magnetic semiconductors. Optical and magnetic techniques were used to evaluate crystal structure restoration and coercive field strength as a function of implant species and annealing temperature. Maximum crystal restoration was obtained for Al0.1Ga0.9N after annealing at 675 °C; for Cr implanted p-GaN after annealing at 750 °C; for Mn or Ni implanted p-GaN after annealing at 675 °C; for Cr implanted ZnO after annealing at 700 °C; for Mn implanted ZnO after annealing at …


Detection Of Bacillus Spores By Aptamer Selectivity Using Atomic Force Microscopy, Nina M. Houtkooper Mar 2005

Detection Of Bacillus Spores By Aptamer Selectivity Using Atomic Force Microscopy, Nina M. Houtkooper

Theses and Dissertations

The anthrax attack of Oct 2001 demonstrates the need for a rapid detector for spores of Bacillus anthracis (BA). Current technology requires cultures of BA to be grown for 24 hours. Using aptamers, a type of nucleic acid ligand selective for a target molecule, to select BA spores for measurement without culturing is a possible solution for quicker detection. An aptamer having a specially selected structure is expected to selectively bind to the surface of its target spore, separating it from other material. An atomic force microscopy (AFM) method was developed to test this selectivity. Aptamers having structure selected to …


Intermediate Phase Of The One Dimensional Half-Filled Hubbard-Holstein Model, R. T. Clay, Rahul Hardikar Jan 2005

Intermediate Phase Of The One Dimensional Half-Filled Hubbard-Holstein Model, R. T. Clay, Rahul Hardikar

Scholarship and Professional Work - LAS

We present a numerical study of the Hubbard-Holstein model in one dimension at half filling, including finite-frequency quantum phonons. At half filling, the effects of the electron-phonon and electron-electron interactions compete with the Holstein phonon coupling acting as an effective negative Hubbard on-site interaction U that promotes on-site electron pairs and a Peierls charge-density wave state. Most previous work on this model has assumed that only Peierls or Mott phases are possible at half filling. However, there has been speculation that a third metallic phase exists between the Peierls and Mott phases. We confirm the intermediate phase, and show that …


Specification Of Jecp/Holz, An Interactive Computer Program For Simulation Of Holz Pattern, Xingzhong Li Jan 2005

Specification Of Jecp/Holz, An Interactive Computer Program For Simulation Of Holz Pattern, Xingzhong Li

Nebraska Center for Materials and Nanoscience: Faculty Publications

1. Purpose of the program 2. Graphic user interface and program design 3. Formulas for calculating the positions of the HOLZ lines 4. System requirement 5. Installation and user instruction 6. How to contact the author 7. References

1. Purpose of the program JECP/HOLZ (Li, 2005a) is one computer program in the Java Electron Crystallography Package (JECP), which is designed and written by Dr. XingZhong Li. The package is developed for quantitative electron diffraction and image processing purpose, JECP/HOLZ is an interactive program for simulation of the higher-order Laue zone (HOLZ) lines using kinematical approximation and a first-order dynamic correction. …


Current-Spin Coupling For Ferromagnetic Domain Walls In Fine Wires, S. E. Barnes, S. Maekawa Jan 2005

Current-Spin Coupling For Ferromagnetic Domain Walls In Fine Wires, S. E. Barnes, S. Maekawa

Physics Articles and Papers

The coupling between a current and a domain wall is examined. In the presence of a finite current and in the absence of a potential which breaks the translational symmetry, there is a perfect transfer of angular momentum from the conduction electrons to the wall. As a result, the ground state is in uniform motion and this remains the case even when relaxation is included. This is described by, appropriately modified, Landau-Lifshitz-Gilbert equations. The results for a simple pinning model are compared with experiment.


Vibrational Dependence Of The H2–H2 C6 Coefficients, Robert Hinde Jan 2005

Vibrational Dependence Of The H2–H2 C6 Coefficients, Robert Hinde

Chemistry Publications and Other Works

We use the sum-over-states formalism to compute the imaginary-frequency dipole polarizabilities for H2, as a function of the H–H bond length, at the full configuration interaction level of theory using atom-centered d-aug-cc-pVQZ basis sets. From these polarizabilities, we obtain isotropic and anisotropic C6 dispersion coefficients for a pair of H2 molecules as functions of the two molecules’ bond lengths.


Vibrational Dependence Of The H2–H2 C6 Coefficients, Robert Hinde Jan 2005

Vibrational Dependence Of The H2–H2 C6 Coefficients, Robert Hinde

Robert Hinde

We use the sum-over-states formalism to compute the imaginary-frequency dipole polarizabilities for H2, as a function of the H–H bond length, at the full configuration interaction level of theory using atom-centered d-aug-cc-pVQZ basis sets. From these polarizabilities, we obtain isotropic and anisotropic C6 dispersion coefficients for a pair of H2 molecules as functions of the two molecules’ bond lengths.


Charged Higgs Production: Higher-Order Corrections, Nikolaos Kidonakis Jan 2005

Charged Higgs Production: Higher-Order Corrections, Nikolaos Kidonakis

Faculty and Research Publications

I present a calculation of higher-order radiative corrections to charged Higgs production in association with a top quark via the process bg -> tH-. Results for charged Higgs production at the LHC are presented, including the dependence of the cross section on the charged Higgs mass, the top quark mass, the factorization and renormalization scales, and tan beta. I show that the theoretical prediction for the cross section is significantly enhanced and is greatly stabilized when the higher-order corrections are included.