Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Investigating The Geoelectrical Response Of Hydrocarbon Contamination Undergoing Biodegradation, D. Dale Werkema, Estella A. Atekwana, Anthony L. Endres, William August Sauck, Daniel P. Cassidy Jun 2003

Investigating The Geoelectrical Response Of Hydrocarbon Contamination Undergoing Biodegradation, D. Dale Werkema, Estella A. Atekwana, Anthony L. Endres, William August Sauck, Daniel P. Cassidy

Geosciences and Geological and Petroleum Engineering Faculty Research & Creative Works

A newly proposed geoelectrical model for hydrocarbon contaminated sites predicts high conductivities coincident with the contaminated zone as opposed to the traditionally accepted low conductivity. The model attributes the high conductivities to mineral weathering resulting from byproducts of microbial redox processes. To evaluate this conductive model, in situ vertical conductivity measurements were acquired from a light non-aqueous phase liquid (LNAPL) contaminated site. The results showed high conductivities coincident with the zone of contamination and within the smear zone influenced by seasonal water table fluctuations. We infer this zone as an active zone of biodegradation and suggest significant microbial degradation under …


Inverse Modeling Of Btex Dissolution And Biodegradation At The Bemidji, Mn Crude-Oil Spill Site, Hedeff I. Essaid, Isabelle M. Cozzarelli, Robert P. Eganhouse, William N. Herkelrath, Barbara A. Bekins, Geoffrey N. Delin, Win Butler Jan 2003

Inverse Modeling Of Btex Dissolution And Biodegradation At The Bemidji, Mn Crude-Oil Spill Site, Hedeff I. Essaid, Isabelle M. Cozzarelli, Robert P. Eganhouse, William N. Herkelrath, Barbara A. Bekins, Geoffrey N. Delin, Win Butler

United States Geological Survey: Staff Publications

The U.S. Geological Survey (USGS) solute transport and biodegradation code BIOMOC was used in conjunction with the USGS universal inverse modeling code UCODE to quantify field-scale hydrocarbon dissolution and biodegradation at the USGS Toxic Substances Hydrology Program crude-oil spill research site located near Bemidji, MN. This inverse modeling effort used the extensive historical data compiled at the Bemidji site from 1986 to 1997 and incorporated a multicomponent transport and biodegradation model. Inverse modeling was successful when coupled transport and degradation processes were incorporated into the model and a single dissolution rate coefficient was used for all BTEX components. Assuming a …