Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Role Of Oxygen Electrons In The Metal-Insulator Transition In The Magnetoresistive Oxide La2-2xsr1+2xmn2o7 Probed By Compton Scattering, B. Barbiellini, A. Koizumi, P. E. Mijnarends, W. Al-Sawai, Hsin Lin, T. Nagao, K. Hirota, M. Itou, Y. Sakurai, A. Bansil Apr 2012

Role Of Oxygen Electrons In The Metal-Insulator Transition In The Magnetoresistive Oxide La2-2xsr1+2xmn2o7 Probed By Compton Scattering, B. Barbiellini, A. Koizumi, P. E. Mijnarends, W. Al-Sawai, Hsin Lin, T. Nagao, K. Hirota, M. Itou, Y. Sakurai, A. Bansil

Bernardo Barbiellini

We have studied the [100]-[110] anisotropy of the Compton profile in the bilayer manganite. Quantitative agreement is found between theory and experiment with respect to the anisotropy in the two metallic phases (i.e., the low temperature ferromagnetic and the colossal magnetoresistant phase under a magnetic field of 7 T). Robust signatures of the metal-insulator transition are identified in the momentum density for the paramagnetic phase above the Curie temperature. We interpret our results as providing direct evidence for the transition from the metalliclike to the admixed ionic-covalent bonding accompanying the magnetic transition. The number of electrons involved in this phase …


Role Of Oxygen Electrons In The Metal-Insulator Transition In The Magnetoresistive Oxide La2-2xsr1+2xmn2o7 Probed By Compton Scattering, B. Barbiellini, A. Koizumi, P. E. Mijnarends, W. Al-Sawai, Hsin Lin, T. Nagao, K. Hirota, M. Itou, Y. Sakurai, A. Bansil Apr 2012

Role Of Oxygen Electrons In The Metal-Insulator Transition In The Magnetoresistive Oxide La2-2xsr1+2xmn2o7 Probed By Compton Scattering, B. Barbiellini, A. Koizumi, P. E. Mijnarends, W. Al-Sawai, Hsin Lin, T. Nagao, K. Hirota, M. Itou, Y. Sakurai, A. Bansil

Hsin Lin

We have studied the [100]-[110] anisotropy of the Compton profile in the bilayer manganite. Quantitative agreement is found between theory and experiment with respect to the anisotropy in the two metallic phases (i.e., the low temperature ferromagnetic and the colossal magnetoresistant phase under a magnetic field of 7 T). Robust signatures of the metal-insulator transition are identified in the momentum density for the paramagnetic phase above the Curie temperature. We interpret our results as providing direct evidence for the transition from the metalliclike to the admixed ionic-covalent bonding accompanying the magnetic transition. The number of electrons involved in this phase …


Role Of Oxygen Electrons In The Metal-Insulator Transition In The Magnetoresistive Oxide La2-2xsr1+2xmn2o7 Probed By Compton Scattering, B. Barbiellini, A. Koizumi, P. E. Mijnarends, W. Al-Sawai, Hsin Lin, T. Nagao, K. Hirota, M. Itou, Y. Sakurai, A. Bansil Apr 2012

Role Of Oxygen Electrons In The Metal-Insulator Transition In The Magnetoresistive Oxide La2-2xsr1+2xmn2o7 Probed By Compton Scattering, B. Barbiellini, A. Koizumi, P. E. Mijnarends, W. Al-Sawai, Hsin Lin, T. Nagao, K. Hirota, M. Itou, Y. Sakurai, A. Bansil

Arun Bansil

We have studied the [100]-[110] anisotropy of the Compton profile in the bilayer manganite. Quantitative agreement is found between theory and experiment with respect to the anisotropy in the two metallic phases (i.e., the low temperature ferromagnetic and the colossal magnetoresistant phase under a magnetic field of 7 T). Robust signatures of the metal-insulator transition are identified in the momentum density for the paramagnetic phase above the Curie temperature. We interpret our results as providing direct evidence for the transition from the metalliclike to the admixed ionic-covalent bonding accompanying the magnetic transition. The number of electrons involved in this phase …


Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman Jan 2006

Thermal Effects On Domain Orientation Of Tetragonal Piezoelectrics Studied By In Situ X-Ray Diffraction, Wonyoung Chang, Alexander H. King, Keith J. Bowman

Alexander H. King

Thermal effects on domain orientation in tetragonal lead zirconate titanate (PZT) and lead titanate (PT) have been investigated by using in situ x-ray diffraction with an area detector. In the case of a soft PZT, it is found that the texture parameter called multiples of a random distribution (MRD) initially increases with temperature up to approximately 100 °C and then falls to unity at temperatures approaching the Curie temperature, whereas the MRD of hard PZT and PT initially undergoes a smaller increase or no change. The relationship between the mechanical strain energy and domain wall mobility with temperature is discussed.