Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Aspect-Based Sentiment Analysis Of Movie Reviews, Samuel Onalaja, Eric Romero, Bosang Yun Dec 2021

Aspect-Based Sentiment Analysis Of Movie Reviews, Samuel Onalaja, Eric Romero, Bosang Yun

SMU Data Science Review

This study investigates a comparison of classification models used to determine aspect based separated text sentiment and predict binary sentiments of movie reviews with genre and aspect specific driving factors. To gain a broader classification analysis, five machine and deep learning algorithms were compared: Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), and Recurrent Neural Network Long-Short-Term Memory (RNN LSTM). The various movie aspects that are utilized to separate the sentences are determined through aggregating aspect words from lexicon-base, supervised and unsupervised learning. The driving factors are randomly assigned to various movie aspects and their impact tied to …


Predicting Attrition - A Driver For Creating Value, Realizing Strategy, And Refining Key Hr Processes, Kevin Mendonsa, Maureen Stolberg, Vivek Viswanathan, Scott Crum Aug 2020

Predicting Attrition - A Driver For Creating Value, Realizing Strategy, And Refining Key Hr Processes, Kevin Mendonsa, Maureen Stolberg, Vivek Viswanathan, Scott Crum

SMU Data Science Review

Talent is the most important asset for every organization's success. While attrition (or churn) and turnover can refer to both employees and customers, this paper will focus on employee attrition only. Many organizations accept attrition as an inevitable cost of doing business and do nothing to adopt or implement mitigating strategies to combat it. World class companies on the other hand take deliberate measures to understand, control and mitigate attrition (turnover) at every stage. Unmitigated attrition can have a devastating effect on an organization's bottom line and market value. In addition, the “invisible" costs of low employee morale, reduced employee …


“Where’S The I-O?” Artificial Intelligence And Machine Learning In Talent Management Systems, Manuel F. Gonzalez, John F. Capman, Frederick L. Oswald, Evan R. Theys, David L. Tomczak Nov 2019

“Where’S The I-O?” Artificial Intelligence And Machine Learning In Talent Management Systems, Manuel F. Gonzalez, John F. Capman, Frederick L. Oswald, Evan R. Theys, David L. Tomczak

Personnel Assessment and Decisions

Artificial intelligence (AI) and machine learning (ML) have seen widespread adoption by organizations seeking to identify and hire high-quality job applicants. Yet the volume, variety, and velocity of professional involvement among I-O psychologists remains relatively limited when it comes to developing and evaluating AI/ML applications for talent assessment and selection. Furthermore, there is a paucity of empirical research that investigates the reliability, validity, and fairness of AI/ML tools in organizational contexts. To stimulate future involvement and research, we share our review and perspective on the current state of AI/ML in talent assessment as well as its benefits and potential pitfalls; …


Cryptovisor: A Cryptocurrency Advisor Tool, Matthew Baldree, Paul Widhalm, Brandon Hill, Matteo Ortisi Jul 2018

Cryptovisor: A Cryptocurrency Advisor Tool, Matthew Baldree, Paul Widhalm, Brandon Hill, Matteo Ortisi

SMU Data Science Review

In this paper, we present a tool that provides trading recommendations for cryptocurrency using a stochastic gradient boost classifier trained from a model labeled by technical indicators. The cryptocurrency market is volatile due to its infancy and limited size making it difficult for investors to know when to enter, exit, or stay in the market. Therefore, a tool is needed to provide investment recommendations for investors. We developed such a tool to support one cryptocurrency, Bitcoin, based on its historical price and volume data to recommend a trading decision for today or past days. This tool is 95.50% accurate with …