Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Physical Sciences and Mathematics

Deploying Machine Learning For A Sustainable Future, Cary Coglianese May 2020

Deploying Machine Learning For A Sustainable Future, Cary Coglianese

Faculty Scholarship at Penn Law

To meet the environmental challenges of a warming planet and an increasingly complex, high tech economy, government must become smarter about how it makes policies and deploys its limited resources. It specifically needs to build a robust capacity to analyze large volumes of environmental and economic data by using machine-learning algorithms to improve regulatory oversight, monitoring, and decision-making. Three challenges can be expected to drive the need for algorithmic environmental governance: more problems, less funding, and growing public demands. This paper explains why algorithmic governance will prove pivotal in meeting these challenges, but it also presents four likely obstacles that ...


The Future Of Work Now: Cyber Threat Attribution At Fireeye, Thomas H. Davenport, Steven Miller May 2020

The Future Of Work Now: Cyber Threat Attribution At Fireeye, Thomas H. Davenport, Steven Miller

Research Collection School Of Information Systems

One of the most frequently-used phrases at business events these days is “the future of work.” It’s increasingly clear that artificial intelligence and other new technologies will bring substantial changes in work tasks and business processes. But while these changes are predicted for the future, they’re already present in many organizations for many different jobs. The job and incumbent described below is an example of this phenomenon. It’s a clear example of an existing job that’s been transformed by AI and related tools.


Text Analytics, Nlp, And Accounting Research, Richard M. Crowley Apr 2020

Text Analytics, Nlp, And Accounting Research, Richard M. Crowley

Research Collection School Of Accountancy

The presentation covered: What is text analytics and NLP?; How text analytics has evolved in the accounting literature since the 1980s; What current (as of 2020) methods are used in the literature; What methods are on the horizon.


Interpretive Model Of Manufacturing: A Review Of Machine Learning In Manufacturing, Ajit Sharma, Zhibo Zhang, Rahul Rai Jan 2020

Interpretive Model Of Manufacturing: A Review Of Machine Learning In Manufacturing, Ajit Sharma, Zhibo Zhang, Rahul Rai

Business Administration Faculty Research Publications

There has been a paradigmatic shift in manufacturing as computing has transitioned from the programmable to the cognitive computing era. In this paper we present a theoretical framework for understanding this paradigmatic shift in manufacturing and the fast evolving role of artificial intelligence. Policy, Strategic and Operational implications are discussed. Implications for the future of strategy and operations in manufacturing are also discussed. Future research directions are presented.


Early Detection Of Fake News On Social Media, Yang Liu Dec 2019

Early Detection Of Fake News On Social Media, Yang Liu

Dissertations

The ever-increasing popularity and convenience of social media enable the rapid widespread of fake news, which can cause a series of negative impacts both on individuals and society. Early detection of fake news is essential to minimize its social harm. Existing machine learning approaches are incapable of detecting a fake news story soon after it starts to spread, because they require certain amounts of data to reach decent effectiveness which take time to accumulate. To solve this problem, this research first analyzes and finds that, on social media, the user characteristics of fake news spreaders distribute significantly differently from those ...


“Where’S The I-O?” Artificial Intelligence And Machine Learning In Talent Management Systems, Manuel F. Gonzalez, John F. Capman, Frederick L. Oswald, Evan R. Theys, David L. Tomczak Nov 2019

“Where’S The I-O?” Artificial Intelligence And Machine Learning In Talent Management Systems, Manuel F. Gonzalez, John F. Capman, Frederick L. Oswald, Evan R. Theys, David L. Tomczak

Personnel Assessment and Decisions

Artificial intelligence (AI) and machine learning (ML) have seen widespread adoption by organizations seeking to identify and hire high-quality job applicants. Yet the volume, variety, and velocity of professional involvement among I-O psychologists remains relatively limited when it comes to developing and evaluating AI/ML applications for talent assessment and selection. Furthermore, there is a paucity of empirical research that investigates the reliability, validity, and fairness of AI/ML tools in organizational contexts. To stimulate future involvement and research, we share our review and perspective on the current state of AI/ML in talent assessment as well as its benefits ...


Detecting Digitally Forged Faces In Online Videos, Neilesh Sambhu Oct 2019

Detecting Digitally Forged Faces In Online Videos, Neilesh Sambhu

Graduate Theses and Dissertations

We use Rossler’s FaceForensics dataset of 1004 online videos and their corresponding forged counterparts [1] to investigate the ability to distinguish digitally forged facial images from original images automatically with deep learning. The proposed convolutional neural network is much smaller than the current state-of-the-art solutions. Nevertheless, the network maintains a high level of accuracy (99.6%), all while using the entire FaceForensics dataset and not including any temporal information. We implement majority voting and show the impact on accuracy (99.67%), where only 1 video of 300 is misclassified. We examine why the model misclassified this one video. In ...


Distilling Managerial Insights And Lessons From Ai Projects At Singapore's Changi Airport (Part 2), Steve Lee, Steven Miller May 2019

Distilling Managerial Insights And Lessons From Ai Projects At Singapore's Changi Airport (Part 2), Steve Lee, Steven Miller

Asian Management Insights

Since 2017, Changi Airport group (CAG) has initiated a host of pilot projects that use connective and intelligent technologies to enable its move towards digital transformation and SMART Airport Vision. This has resulted in a first wave of deployment of AI and Machine Learning-enabled applications across various functions that can better sense, analyse, predict, and interact with people.


Ai Gets Real At Singapore's Changi Airport (Part 1), Steve Lee, Steven Miller May 2019

Ai Gets Real At Singapore's Changi Airport (Part 1), Steve Lee, Steven Miller

Asian Management Insights

Ranked as the best airport for seven consecutive years, Singapore’s Changi Airport is lauded the world over for the efficient, safe, pleasurable and seamless service it offers the millions of passengers that pass through its facilities annually. Much of Changi Airport’s success can be attributed to the organisation’s customer-oriented business focus and deeply embedded culture of service excellence, combined with a host of advanced technologies operating invisibly in the background. The framework for this technology enablement is Changi Airport Group’s (CAG’s) SMART Airport Vision—an enterprise-wide approach to connective technologies that leverages sensors, data fusion ...


Automated Trading Systems Statistical And Machine Learning Methods And Hardware Implementation: A Survey, Boming Huang, Yuziang Huan, Li Da Xu, Lirong Zheng, Zhuo Zou Jan 2019

Automated Trading Systems Statistical And Machine Learning Methods And Hardware Implementation: A Survey, Boming Huang, Yuziang Huan, Li Da Xu, Lirong Zheng, Zhuo Zou

Information Technology & Decision Sciences Faculty Publications

Automated trading, which is also known as algorithmic trading, is a method of using a predesigned computer program to submit a large number of trading orders to an exchange. It is substantially a real-time decision-making system which is under the scope of Enterprise Information System (EIS). With the rapid development of telecommunication and computer technology, the mechanisms underlying automated trading systems have become increasingly diversified. Considerable effort has been exerted by both academia and trading firms towards mining potential factors that may generate significantly higher profits. In this paper, we review studies on trading systems built using various methods and ...


Attractive Or Aggressive? A Face Recognition And Machine Learning Approach For Estimating Returns To Visual Appearance, Guodong Guo, Brad R. Humphreys, Mohammad I. Nouyed, Yang Zhou Jan 2019

Attractive Or Aggressive? A Face Recognition And Machine Learning Approach For Estimating Returns To Visual Appearance, Guodong Guo, Brad R. Humphreys, Mohammad I. Nouyed, Yang Zhou

Economics Faculty Working Papers Series

A growing literature documents the presence of appearance premia in labor markets. We analyze appearance premia in a high-profile, high-pay setting: head football coaches at bigtime college sports programs. These employees face job tasks involving repeated interpersonal interaction on multiple fronts and also act as the “face” of their program. We estimate the attractiveness of each employee using a neural network approach, a pre-trained Convolutional Neural Network fine tuned for this application. This approach can eliminate biases induced by volunteer evaluators and limited numbers of photos. We also use this approach to estimate the perceived aggressiveness of each employee based ...


Regression Tree Construction For Reinforcement Learning Problems With A General Action Space, Anthony S. Bush Jr Jan 2019

Regression Tree Construction For Reinforcement Learning Problems With A General Action Space, Anthony S. Bush Jr

Electronic Theses and Dissertations

Part of the implementation of Reinforcement Learning is constructing a regression of values against states and actions and using that regression model to optimize over actions for a given state. One such common regression technique is that of a decision tree; or in the case of continuous input, a regression tree. In such a case, we fix the states and optimize over actions; however, standard regression trees do not easily optimize over a subset of the input variables\cite{Card1993}. The technique we propose in this thesis is a hybrid of regression trees and kernel regression. First, a regression tree ...


Cryptovisor: A Cryptocurrency Advisor Tool, Matthew Baldree, Paul Widhalm, Brandon Hill, Matteo Ortisi Jul 2018

Cryptovisor: A Cryptocurrency Advisor Tool, Matthew Baldree, Paul Widhalm, Brandon Hill, Matteo Ortisi

SMU Data Science Review

In this paper, we present a tool that provides trading recommendations for cryptocurrency using a stochastic gradient boost classifier trained from a model labeled by technical indicators. The cryptocurrency market is volatile due to its infancy and limited size making it difficult for investors to know when to enter, exit, or stay in the market. Therefore, a tool is needed to provide investment recommendations for investors. We developed such a tool to support one cryptocurrency, Bitcoin, based on its historical price and volume data to recommend a trading decision for today or past days. This tool is 95.50% accurate ...


Opportunity Identification For New Product Planning: Ontological Semantic Patent Classification, Farshad Madani Feb 2018

Opportunity Identification For New Product Planning: Ontological Semantic Patent Classification, Farshad Madani

Dissertations and Theses

Intelligence tools have been developed and applied widely in many different areas in engineering, business and management. Many commercialized tools for business intelligence are available in the market. However, no practically useful tools for technology intelligence are available at this time, and very little academic research in technology intelligence methods has been conducted to date.

Patent databases are the most important data source for technology intelligence tools, but patents inherently contain unstructured data. Consequently, extracting text data from patent databases, converting that data to meaningful information and generating useful knowledge from this information become complex tasks. These tasks are currently ...


Estimating The Optimal Cutoff Point For Logistic Regression, Zheng Zhang Jan 2018

Estimating The Optimal Cutoff Point For Logistic Regression, Zheng Zhang

Open Access Theses & Dissertations

Binary classification is one of the main themes of supervised learning. This research is concerned about determining the optimal cutoff point for the continuous-scaled outcomes (e.g., predicted probabilities) resulting from a classifier such as logistic regression. We make note of the fact that the cutoff point obtained from various methods is a statistic, which can be unstable with substantial variation. Nevertheless, due partly to complexity involved in estimating the cutpoint, there has been no formal study on the variance or standard error of the estimated cutoff point.

In this Thesis, a bootstrap aggregation method is put forward to estimate ...


Artificial Intelligence And It Professionals, Sunil Mithas, Thomas Kude, Jonathan W. Whitaker Jan 2018

Artificial Intelligence And It Professionals, Sunil Mithas, Thomas Kude, Jonathan W. Whitaker

Management Faculty Publications

How will continuing developments in artificial intelligence (AI) and machine learning influence IT professionals? This article approaches this question by identifying the factors that influence the demand for software developers and IT professionals, describing how these factors relate to AI, and articulating the likely impact on IT professionals.


Viewability Prediction For Display Advertising, Chong Wang May 2017

Viewability Prediction For Display Advertising, Chong Wang

Dissertations

As a massive industry, display advertising delivers advertisers’ marketing messages to attract customers through graphic banners on webpages. Display advertising is also the most essential revenue source of online publishers. Currently, advertisers are charged by user response or ad serving. However, recent studies show that users barely click or convert display ads. Moreover, about half of the ads are actually never seen by users. In this case, advertisers cannot enhance their brand awareness and increase return on investment. Publishers also lose much revenue. Therefore, the ad pricing standards are shifting to a new model: ad impressions are paid if they ...


Information Filtering By Multiple Examples, Mingzhu Zhu May 2015

Information Filtering By Multiple Examples, Mingzhu Zhu

Dissertations

A key to successfully satisfy an information need lies in how users express it using keywords as queries. However, for many users, expressing their information needs using keywords is difficult, especially when the information need is complex. Search By Multiple Examples (SBME), a promising method for overcoming this problem, allows users to specify their information needs as a set of relevant documents rather than as a set of keywords.

Most of the studies on SBME adopt the Positive Unlabeled learning (PU learning) techniques by treating the user's provided examples (denoted as query examples) as positive set and the entire ...


Svmaud: Using Textual Information To Predict The Audience Level Of Written Works Using Support Vector Machines, Todd Will Jan 2014

Svmaud: Using Textual Information To Predict The Audience Level Of Written Works Using Support Vector Machines, Todd Will

Dissertations

Information retrieval systems should seek to match resources with the reading ability of the individual user; similarly, an author must choose vocabulary and sentence structures appropriate for his or her audience. Traditional readability formulas, including the popular Flesch-Kincaid Reading Age and the Dale-Chall Reading Ease Score, rely on numerical representations of text characteristics, including syllable counts and sentence lengths, to suggest audience level of resources. However, the author’s chosen vocabulary, sentence structure, and even the page formatting can alter the predicted audience level by several levels, especially in the case of digital library resources. For these reasons, the performance ...


Model Selection Using Database Characteristics: Developing A Classification Tree For Longitudinal Incidence Data, Eric M. Schwartz, Eric T. Bradlow, Peter S. Fader Jan 2014

Model Selection Using Database Characteristics: Developing A Classification Tree For Longitudinal Incidence Data, Eric M. Schwartz, Eric T. Bradlow, Peter S. Fader

Statistics Papers

When managers and researchers encounter a data set, they typically ask two key questions: (1) Which model (from a candidate set) should I use? And (2) if I use a particular model, when is it going to likely work well for my business goal? This research addresses those two questions and provides a rule, i.e., a decision tree, for data analysts to portend the “winning model” before having to fit any of them for longitudinal incidence data. We characterize data sets based on managerially relevant (and easy-to-compute) summary statistics, and we use classification techniques from machine learning to provide ...


Online Portfolio Selection: A Survey, Bin Li, Steven C. H. Hoi Jan 2014

Online Portfolio Selection: A Survey, Bin Li, Steven C. H. Hoi

Research Collection School Of Information Systems

Online portfolio selection is a fundamental problem in computational finance, which has been extensively studied across several research communities, including finance, statistics, artificial intelligence, machine learning, and data mining. This article aims to provide a comprehensive survey and a structural understanding of online portfolio selection techniques published in the literature. From an online machine learning perspective, we first formulate online portfolio selection as a sequential decision problem, and then we survey a variety of state-of-the-art approaches, which are grouped into several major categories, including benchmarks, Follow-the-Winner approaches, Follow-the-Loser approaches, Pattern-Matching--based approaches, and Meta-Learning Algorithms. In addition to the problem formulation ...


Empirical Methods-A Review: With An Introduction To Data Mining And Machine Learning, Matt Bogard May 2011

Empirical Methods-A Review: With An Introduction To Data Mining And Machine Learning, Matt Bogard

Economics Faculty Publications

This presentation was part of a staff workshop focused on empirical methods and applied research. This includes a basic overview of regression with matrix algebra, maximum likelihood, inference, and model assumptions. Distinctions are made between paradigms related to classical statistical methods and algorithmic approaches. The presentation concludes with a brief discussion of generalization error, data partitioning, decision trees, and neural networks.


Using Symbolic Knowledge In The Umls To Disambiguate Words In Small Datasets With A Naive Bayes Classifier, Gondy Leroy, Thomas C. Rindflesch Jan 2004

Using Symbolic Knowledge In The Umls To Disambiguate Words In Small Datasets With A Naive Bayes Classifier, Gondy Leroy, Thomas C. Rindflesch

CGU Faculty Publications and Research

Current approaches to word sense disambiguation use and combine various machine-learning techniques. Most refer to characteristics of the ambiguous word and surrounding words and are based on hundreds of examples. Unfortunately, developing large training sets is time-consuming. We investigate the use of symbolic knowledge to augment machine-learning techniques for small datasets. UMLS semantic types assigned to concepts found in the sentence and relationships between these semantic types form the knowledge base. A naïve Bayes classifier was trained for 15 words with 100 examples for each. The most frequent sense of a word served as the baseline. The effect of increasingly ...