Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Dynamics Of Density Cavities Generated By Frictional Heating: Formation, Distortion, And Instability, M. D. Zettergren, J. L. Semeter, H. Dahlgren Dec 2015

Dynamics Of Density Cavities Generated By Frictional Heating: Formation, Distortion, And Instability, M. D. Zettergren, J. L. Semeter, H. Dahlgren

Publications

A simulation study of the generation and evolution of mesoscale density cavities in the polar ionosphere is conducted using a time-dependent, nonlinear, quasi-electrostatic model. The model demonstrates that density cavities, generated by frictional heating, can form in as little as 90 s due to strong electric fields of ∼120 mV/m, which are sometimes observed near auroral zone and polar cap arcs. Asymmetric density cavity features and strong plasma density gradients perpendicular to the geomagnetic field are naturally generated as a consequence of the strong convection and finite extent of the auroral feature. The walls of the auroral density cavities are …


Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively Sep 2015

Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively

Publications

"An anelastic numerical model is used to explore the dynamics accompanying the attainment of large amplitudes by gravity waves (GWs) that are localized in altitude and time. GW momentum transport induces mean flow variations accompanying a GW packet that grows exponentially with altitude, is localized in altitude, and induces significant GW phase speed, and phase, variations across the GW packet. These variations arise because the GW occupies the region undergoing accelerations, with the induced phase speed variations referred to as “self-acceleration.” Results presented here reveal that self-acceleration of a GW packet localized in time and altitude ultimately leads to stalling …


Kelvin-Helmholtz Instability Of The Cme Reconnection Outflow Layer In The Low Corona, Claire Foullon, Erwin Verwichte, Katariina Nykyri, Markus J. Aschwanden, Iain G. Hannah Apr 2013

Kelvin-Helmholtz Instability Of The Cme Reconnection Outflow Layer In The Low Corona, Claire Foullon, Erwin Verwichte, Katariina Nykyri, Markus J. Aschwanden, Iain G. Hannah

Publications

New capabilities for studying the Sun allow us to image for the first time the magnetic Kelvin–Helmholtz (KH) instability developing at the surface of a fast coronal mass ejecta (CME) less than 150 Mm above the solar surface. We conduct a detailed observational investigation of this phenomenon, observed off the east solar limb on 2010 November 3, in the EUV with SDO/AIA. In conjunction with STEREO-B/EUVI, we derive the CME source surface position. We ascertain the timing and early evolution of the CME outflow leading to the instability onset. We perform image and spectral analysis, exploring the CME plasma structuring …