Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

Discipline
Institution
Keyword
Publication Year
File Type

Articles 1 - 30 of 1299

Full-Text Articles in Physical Sciences and Mathematics

Exploring Practical Measures As An Approach For Measuring Elementary Students’ Attitudes Towards Computer Science, Umar Shehzad, Mimi M. Recker, Jody E. Clarke-Midura Apr 2024

Exploring Practical Measures As An Approach For Measuring Elementary Students’ Attitudes Towards Computer Science, Umar Shehzad, Mimi M. Recker, Jody E. Clarke-Midura

Publications

This paper presents a novel approach for predicting the outcomes of elementary students’ participation in computer science (CS) instruction by using exit tickets, a type of practical measure, where students provide rapid feedback on their instructional experiences. Such feedback can help teachers to inform ongoing teaching and instructional practices. We fit a Structural Equation Model to examine whether students' perceptions of enjoyment, ease, and connections between mathematics and CS in an integrated lesson predicted their affective outcomes in self-efficacy, interest, and CS identity, collected in a pre- post- survey. We found that practical measures can validly measure student experiences.


Interferometric Imaging With Eiscat_3d For Fine-Scale In-Beam Incoherent Scatter Spectra Measurements, M. Zettergren, Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, John Swoboda, Ilkka Virtanen, Spencer Hatch, Karl M. Laundal Mar 2024

Interferometric Imaging With Eiscat_3d For Fine-Scale In-Beam Incoherent Scatter Spectra Measurements, M. Zettergren, Devin Huyghebaert, Björn Gustavsson, Juha Vierinen, Andreas Kvammen, John Swoboda, Ilkka Virtanen, Spencer Hatch, Karl M. Laundal

Publications

The 233 MHz EISCAT_3D radar system currently under construction in northern Fennoscandia will be able to resolve ionospheric structures smaller than the transmit beam dimensions through the use of interferometric imaging. This capability is made possible by the modular design and digitization of the 119 91-antenna panels located at the main Skibotn site. The main array consists of a cluster of 109 panels, with 10 outlier panels producing unique interferometry baselines. In the present study synthesized incoherent scatter radar signal measurements are used for interferometric imaging analysis with the EISCAT_3D system. The Geospace Environment Model of Ion-Neutral Interactions (GEMINI) model …


Facilitating Mathematics And Computer Science Connections: A Cross-Curricular Approach, Kimberly E. Beck, Jessica F. Shumway, Umar Shehzad, Jody Clarke-Midura, Mimi Recker Jan 2024

Facilitating Mathematics And Computer Science Connections: A Cross-Curricular Approach, Kimberly E. Beck, Jessica F. Shumway, Umar Shehzad, Jody Clarke-Midura, Mimi Recker

Publications

In the United States, school curricula are often created and taught with distinct boundaries between disciplines. This division between curricular areas may serve as a hindrance to students' long-term learning and their ability to generalize. In contrast, cross-curricular pedagogy provides a way for students to think beyond the classroom walls and make important connections across disciplines. The purpose of this paper is a theoretical reflection on our use of Expansive Framing in our design of lessons across learning environments within the school. We provide a narrative account of our early work in using this theoretical framework to co-plan and enact …


Toward The Unified Theory Of Said-Linked Subauroral Arcs, Evgeny V. Mishin, Anatoly V. Streltsov Jan 2024

Toward The Unified Theory Of Said-Linked Subauroral Arcs, Evgeny V. Mishin, Anatoly V. Streltsov

Publications

We present a unified approach to subauroral arcs within intense subauroral ion drifts (SAID), which explains the observed transition of a precursor Stable Auroral Red (SAR) arc into Strong Thermal Emission Velocity Enhancement (STEVE). This approach is based on the short-circuiting concept of fasttime SAID as an integral part of a magnetospheric voltage generator between the innermost boundaries of the freshly injected plasma sheet electrons and ring current ions. Here, enhanced plasma turbulence rapidly heats the bulk plasma and accelerates suprathermal non-Maxwellian “tails.” Heat and suprathermal electron transport rapidly elevate the ionospheric electron temperature—the source of a bright SAR arc. …


Impact Of Weather Factors On Airport Arrival Rates: Application Of Machine Learning In Air Transportation, Robert W. Maxson, Dothang Truong, Woojin Choi Dec 2023

Impact Of Weather Factors On Airport Arrival Rates: Application Of Machine Learning In Air Transportation, Robert W. Maxson, Dothang Truong, Woojin Choi

Publications

Weather is responsible for approximately 70% of air transportation delays in the National Airspace System, and delays resulting from convective weather alone cost airlines and passengers millions of dollars each year due to delays that could be avoided. This research sought to establish relationships between environmental variables and airport efficiency estimates by data mining archived weather and airport performance data at ten geographically and climatologically different airports. Several meaningful relationships were discovered from six out of ten airports using various machine learning methods within an overarching data mining protocol, and the developed models were tested using historical data.


Multi-Layer Evolution Of Acoustic-Gravity Waves And Ionospheric Disturbances Over The United States After The 2022 Hunga Tonga Volcano Eruption, P. A. Inchin, A. Bhatt, S. A. Cummer, S. D. Eckermann, B. J. Harding, J. Ma, J. J. Makela, J B. Snively Dec 2023

Multi-Layer Evolution Of Acoustic-Gravity Waves And Ionospheric Disturbances Over The United States After The 2022 Hunga Tonga Volcano Eruption, P. A. Inchin, A. Bhatt, S. A. Cummer, S. D. Eckermann, B. J. Harding, J. Ma, J. J. Makela, J B. Snively

Publications

e Hunga-Tonga Hunga-Ha'apai volcano underwent a series of large-magnitude eruptions that generated in the atmosphere. We investigate the spatial and temporal evolutions of fluctuations driven by atmospheric acoustic-gravity waves (AGWs) and, in particular, the Lamb wave modes in high spatial resolution data sets measured over the Continental United States (CONUS), complemented with data over the Americas and the Pacific. Along with >800 barometer sites, tropospheric observations, and Total Electron Content data from >3,000 receivers, we report detections of volcano-induced AGWs in mesopause and ionosphere-thermosphere airglow imagery and Fabry-Perot interferometry. We also report unique AGW signatures in the ionospheric D-region, measured …


Gravity Waves Generated By The Hunga Tonga-Hunga Ha‘Apai Volcanic Eruption And Their Global Propagation In The Mesosphere/Lower Thermosphere Observed By Meteor Radars And Modeled With The High-Altitude General Mechanistic Circulation Model, Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Diego Janches, Zishun Qiao, Et.Al Oct 2023

Gravity Waves Generated By The Hunga Tonga-Hunga Ha‘Apai Volcanic Eruption And Their Global Propagation In The Mesosphere/Lower Thermosphere Observed By Meteor Radars And Modeled With The High-Altitude General Mechanistic Circulation Model, Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Diego Janches, Zishun Qiao, Et.Al

Publications

The Hunga Tonga-Hunga Ha‘apai volcano erupted on 15th January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanic- caused gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic General Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward propagating gravity wave packet with an observed phase speed of 240±5.7 m/s and a westward propagating gravity wave with an observed phase speed of 166.5 ±6.4 m/s. We identified these waves in the HIAMCM and obtained …


The Gbt Diffuse Ionized Gas Survey (Gdigs): Discrete Sources, Dylan J. Linville, Matteo Luisi, Bin Liu, T. M. Bania, Dana S. Balser, Trey V. Wenger, L. M. Haffner Oct 2023

The Gbt Diffuse Ionized Gas Survey (Gdigs): Discrete Sources, Dylan J. Linville, Matteo Luisi, Bin Liu, T. M. Bania, Dana S. Balser, Trey V. Wenger, L. M. Haffner

Publications

The Green Bank Telescope (GBT) Diffuse Ionized Gas Survey (GDIGS) traces ionized gas in the Galactic midplane by observing radio recombination line (RRL) emission from 4–8 GHz. The nominal survey zone is 32.3◦ > ℓ > −5◦, | b | < 0.5◦. Here, we analyze GDIGS Hnα ionized gas emission toward discrete sources. Using GDIGS data, we identify the velocity of 35 H II regions that have multiple detected RRL velocity components. We identify and characterize RRL emission from 88 H II regions that previously lacked measured ionized gas velocities. We also identify and characterize RRL emission from eight locations that appear to be previously-unidentified H II regions and 30 locations of RRL emission that do not appear to be H II regions based on their lack of mid-infrared emission. This latter group may be a compact component of the Galactic Diffuse Ionized Gas (DIG). There are an additional 10 discrete sources that have anomalously high RRL velocities for their locations in the Galactic plane. We compare these objects’ RRL data to 13CO, H I and mid-infrared data, and find that these sources do not have the expected 24 µm emission characteristic of H II regions. Based on this comparison we do not think these objects are H II regions, but we are unable to classify them as a known type of object.


On The Propagation Of Whistler-Mode Waves In The 2 Magnetic Ducts, Salman A. Nejad, Anatoly V. Streltsov Sep 2023

On The Propagation Of Whistler-Mode Waves In The 2 Magnetic Ducts, Salman A. Nejad, Anatoly V. Streltsov

Publications

This paper studies extremely-low frequency (ELF) whistler-mode waves’ behavior within small-scale magnetic field irregularities in the Earth’s magnetosphere, known as magnetic ducts. Based on the magnetic fields’ magnitude inside and outside these ducts, they are categorized as high-magnetic ducts (HBD) and low-magnetic ducts (LBD). Using the whistler-mode dispersion relation analysis, our primary focus is to show that LBDs are prone to leak electromagnetic energy outside the duct. We further investigate the hypothesis that whistlers can propagate within LBDs without any signal loss when the width of the duct corresponds to an integer multiple of the perpendicular wavelengths of the waves …


A "Boreing" Night Of Observations Of The Upper Mesosphere And Lower Thermosphere Over The Andes Lidar Observatory, J. H. Hecht, Alan Liu, D. C. Fritts, R. L. Walterscheid, L. J. Gelinas, R. J. Rudy Sep 2023

A "Boreing" Night Of Observations Of The Upper Mesosphere And Lower Thermosphere Over The Andes Lidar Observatory, J. H. Hecht, Alan Liu, D. C. Fritts, R. L. Walterscheid, L. J. Gelinas, R. J. Rudy

Publications

A very high-spatial resolution (∼21-23 m pixel at 85 km altitude) OH airglow imager at the Andes Lidar Observatory at Cerro Pach´on, Chile observed considerable ducted wave activity on the night of October 29-30, 2016. This instrument was collocated with a Na wind-temperature lidar that provided data revealing the occurrence of strong ducts. A large field of view OH and greenline airglow imager showed waves present over a vertical extent consistent with the altitudes of the ducting features identified in the lidar profiles. While waves that appeared to be ducted were seen in all imagers throughout the observation interval, the …


Whistler-Mode Waves In Magnetic Ducts, Anatoly V. Streltsov, Salman A. Nejad Aug 2023

Whistler-Mode Waves In Magnetic Ducts, Anatoly V. Streltsov, Salman A. Nejad

Publications

Observations from the NASA MMS satellites show packages of ELF whistler-mode waves localized inside the small-scale irregularities of the magnetic field. These irregularities are formed by the narrow field-aligned channels where the magnitude of the background magnetic field inside the channel is greater or less than outside. By analogy with the classical density ducts, we introduce the high-B duct (HBD), where the magnitude of the field inside the channel is greater than the outside, and the low-B duct (LBD), where the magnitude of the field inside the channel is less than the outside. We investigate the guiding of the ELF …


Advancing Our Understanding Of Martian Proton Aurora Through A Coordinated Multi-Model Comparison Campaign, Andrea C. G. Hughes, Michael Scott Chaffin, Edwin J. Mierkiewicz, Justin Deighan, Rebecca Jolitz, Esa Kallio, Guillaume Gronof, Valery I. Shematovich, Dmitry Bisikalo, Cyril L. Simon Wedlund, Jasper S. Halekas, Nicholas M. Schneider, Birgit Ritter, Zachary Girazian, Sonal Jain, Jean-Claude M. C. G´Erard, Bradley Michael Hegyi Jul 2023

Advancing Our Understanding Of Martian Proton Aurora Through A Coordinated Multi-Model Comparison Campaign, Andrea C. G. Hughes, Michael Scott Chaffin, Edwin J. Mierkiewicz, Justin Deighan, Rebecca Jolitz, Esa Kallio, Guillaume Gronof, Valery I. Shematovich, Dmitry Bisikalo, Cyril L. Simon Wedlund, Jasper S. Halekas, Nicholas M. Schneider, Birgit Ritter, Zachary Girazian, Sonal Jain, Jean-Claude M. C. G´Erard, Bradley Michael Hegyi

Publications

Proton aurora are the most commonly observed yet least studied type of aurora at Mars. In order to better understand the physics and driving processes of Martian proton aurora, we undertake a multi-model comparison campaign. We compare results from four different proton/hydrogen precipitation models with unique abilities to represent Martian proton aurora: Jolitz model (3-D Monte Carlo), Kallio model (3-D Monte Carlo), Bisikalo/Shematovich et al. model (1-D kinetic Monte Carlo), and Gronoff et al. model (1-D kinetic). This campaign is divided into two steps: an inter-model comparison and a data-model comparison. The inter-model comparison entails modeling five different representative cases …


Estimation Of The Kelvin–Helmholtz Unstable Boundary, Xuanye Ma Jul 2023

Estimation Of The Kelvin–Helmholtz Unstable Boundary, Xuanye Ma

Publications

The Kelvin–Helmholtz (KH) instability is one of the most important mechanisms of the viscous like interaction between the solar wind and the magnetosphere (MSP), which transport the mass, energy, momentum, and magnetic flux. Thus, it is important to examine whether the magnetopause boundary is KH unstable or not. Based on the KH onset conditions, this report proposes to use a matrix to identify the most KH unstable direction based on the in-situ measurements of the density, velocity, and magnetic field in the MSP and magneto sheath. The range of the KH unstable direction can be easily estimated based on the …


Hyper-Local Weather Predictions With The Enhanced General Urban Area Microclimate Predictions Tool, Kevin A. Adkins, William Becker, Sricharan Ayyalasomayajula, Steven Lavenstein, Kleoniki Vlachou, David Miller, Marc Compere, Avinash Muthu Krishnan, Nickolas Macchiarella Jun 2023

Hyper-Local Weather Predictions With The Enhanced General Urban Area Microclimate Predictions Tool, Kevin A. Adkins, William Becker, Sricharan Ayyalasomayajula, Steven Lavenstein, Kleoniki Vlachou, David Miller, Marc Compere, Avinash Muthu Krishnan, Nickolas Macchiarella

Publications

This paper presents enhancements to, and the demonstration of, the General Urban area Microclimate Predictions tool (GUMP), which is designed to provide hyper-local weather predictions by combining machine-learning (ML) models and computational fluid dynamic (CFD) simulations. For the further development and demonstration of GUMP, the Embry–Riddle Aeronautical University (ERAU) campus was used as a test environment. Local weather sensors provided data to train ML models, and CFD models of urban- and suburban-like areas of ERAU’s campus were created and iterated through with a wide assortment of inlet wind speed and direction combinations. ML weather sensor predictions were combined with best-fit …


Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted Von Hippel, David Van Dyk, Steven Degennaro, Elizabeth Jeffery, Bill Jefferys Jun 2023

Bayesian Inference For The White Dwarf Initial-Final Mass Relation, Nathan Stein, Ted Von Hippel, David Van Dyk, Steven Degennaro, Elizabeth Jeffery, Bill Jefferys

Publications

Stars lose mass as they age, and understanding mass loss is important for understanding stellar evolution. The initial-final mass relation (IFMR) is the relationship between a white dwarf’s initial mass on the main sequence and its final mass. We have developed a new method for fitting the IFMR based on a Bayesian analysis of photometric observations, combining deterministic models of stellar evolution in an internally coherent way. No mass data are used. Our method yields precise inferences (with uncertainties) for a parameterized linear IFMR. Our method can also return posterior distributions of white dwarf initial and final masses.


Databases And Inter-Connectivity In Ground-Based Astronomy, Ted Von Hippel, C. M. Mountain Jun 2023

Databases And Inter-Connectivity In Ground-Based Astronomy, Ted Von Hippel, C. M. Mountain

Publications

Optical and infrared ground-based astronomy is undergoing a renaissance. Advances in material technology, system modeling, and the ability to correct atmospheric distortions in real time have produced a new generation of powerful, large telescopes. An equally profound revolution stems from the availability of large observational databases that span the electromagnetic spectrum. The increased use of such databases as well as the need to operate the new telescopes efficiently requires the development of a National or International Virtual Observatory to set standards for astronomical database formats, data quality assurance, and access protocols, and also to provide all-inclusive centers for data products.


The Effect Of Advection On The Three Dimensional Distribution Of Turbulent Kinetic Energy And Its Generation In Idealized Tropical Cyclone Simulations, Joshua B. Wadler, David S. Nolan, Jun A. Zhang, Lynn K. Shay, Joseph B. Olsen, Joseph J. Cione May 2023

The Effect Of Advection On The Three Dimensional Distribution Of Turbulent Kinetic Energy And Its Generation In Idealized Tropical Cyclone Simulations, Joshua B. Wadler, David S. Nolan, Jun A. Zhang, Lynn K. Shay, Joseph B. Olsen, Joseph J. Cione

Publications

The distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal-mean radius of maximum wind speed at 1-km height. As in a previous study, the axisymmetric TKE decreases …


Liouville Soliton Surfaces Obtained Using Darboux Transformations, S. C. Mancas, K. R. Acharya Apr 2023

Liouville Soliton Surfaces Obtained Using Darboux Transformations, S. C. Mancas, K. R. Acharya

Publications

We construct parametric Liouville surfaces corresponding to parametric soliton solutions of the Liouville equation and Darboux-transformed counterparts. We also use a modified variation of parameters method together with the elliptic functions method to obtain the traveling wave solutions to Liouville equation and express the centroaffine invariant in terms of the soliton Hamiltonian.


Rethinking Integrated Computer Science Instruction: A Cross-Context And Expansive Approach In Elementary Classrooms, Umar Shehzad, Jody E. Clarke-Midura, Kimberly Beck, Jessica F. Shumway, Mimi M. Recker Apr 2023

Rethinking Integrated Computer Science Instruction: A Cross-Context And Expansive Approach In Elementary Classrooms, Umar Shehzad, Jody E. Clarke-Midura, Kimberly Beck, Jessica F. Shumway, Mimi M. Recker

Publications

This study examines how a rural-serving school district aimed to provide elementary level computer science (CS) by offering instruction during students’ computer lab, a class taught by paraprofessional educators with limited background in computing. As part of a research practice partnership, cross-context mathematics and CS lessons were co-designed to expansively frame and highlight connections across – as opposed to integration within – the two subjects. Findings indicate that the paraprofessionals teaching the lessons generally reported positive experiences and understanding of content; however, those less comfortable with the content reported lower student interest. Further, most students who engaged with the lessons …


Accelerating Atmospheric Gravity Wave Simulations Using Machine Learning: Kelvin-Helmholtz Instability And Mountain Wave Sources Driving Gravity Wave Breaking And Secondary Gravity Wave Generation, Wenjun Dong, David Fritts, Alan Z. Liu, Hanli Liu, Jonathan Snively Apr 2023

Accelerating Atmospheric Gravity Wave Simulations Using Machine Learning: Kelvin-Helmholtz Instability And Mountain Wave Sources Driving Gravity Wave Breaking And Secondary Gravity Wave Generation, Wenjun Dong, David Fritts, Alan Z. Liu, Hanli Liu, Jonathan Snively

Publications

Gravity waves (GWs) and their associated multi-scale dynamics are known to play fundamental roles in energy and momentum transport and deposition processes throughout the atmosphere. We describe an initial, two-dimensional (2-D), machine learning model – the Compressible Atmosphere Model Network (CAMNet) - intended as a first step toward a more general, three-dimensional, highly-efficient, model for applications to nonlinear GW dynamics description. CAMNet employs a physics-informed neural operator to dramatically accelerate GW and secondary GW (SGW) simulations applied to two GW sources to date. CAMNet is trained on high-resolution simulations by the state-of-the-art model Complex Geometry Compressible Atmosphere Model (CGCAM). Two …


Differences In Pathogenesis-Related Protein Expression And Polyphenolic Compound Accumulation Reveal Insights Into Tomato-Pythium Aphanidermatum Interaction, Seham A. Soliman, Abdulaziz A. Al-Askar, Sherien Sobhy, Marwa A. Samy, Esraa Hamdy, Omaima A. Sharaf, Yiming Su, Said I. Behiry, Ahmed Abdelkhalek Apr 2023

Differences In Pathogenesis-Related Protein Expression And Polyphenolic Compound Accumulation Reveal Insights Into Tomato-Pythium Aphanidermatum Interaction, Seham A. Soliman, Abdulaziz A. Al-Askar, Sherien Sobhy, Marwa A. Samy, Esraa Hamdy, Omaima A. Sharaf, Yiming Su, Said I. Behiry, Ahmed Abdelkhalek

Publications

Plant diseases significantly reduce crop yields, threatening food security and agricultural sustainability. Fungi are the most destructive type of phytopathogen, and they are responsible for major yield losses in some of the most crucial crops grown across the world. In this study, a fungus isolate was detected from infected tomato plants and molecularly identified as Pythium aphanidermatum (GenBank accession number MW725032). This fungus caused damping-off disease and was shown to be pathogenic. Moreover, the expression of five pathogenesis-related genes, namely PR-1, PR-2, PR-3, PR-4, and PR-5, was quantitatively evaluated under the inoculation of tomato with …


Gravity Waves Emitted From Kelvin-Helmholtz Instabilities, Alan Z. Liu, Wenjun Dong, David C. Fritts, Thomas S. Lunda, Han-Li Liu Apr 2023

Gravity Waves Emitted From Kelvin-Helmholtz Instabilities, Alan Z. Liu, Wenjun Dong, David C. Fritts, Thomas S. Lunda, Han-Li Liu

Publications

Fritts, Wang, Lund, and Thorpe (2022, https://doi.org/10.1017/jfm.2021.1085) and Fritts, Wang, Thorpe, and Lund (2022, https://doi.org/10.1017/jfm.2021.1086) described a 3-dimensional direct numerical simulation of interacting Kelvin-Helmholtz instability (KHI) billows and resulting tube and knot (T&K) dynamics that arise at a stratified shear layer defined by an idealized, large-amplitude inertia-gravity wave. Using similar initial conditions, we performed a high-resolution compressible simulation to explore the emission of GWs by these dynamics. The simulation confirms that such shear can induce strong KHI with large horizontal scales and billow depths that readily emit GWs having high frequencies, small horizontal wavelengths, and large vertical group velocities. The …


Geometry And Coding: Introducing An Interactive And Integrated Mathematics-Computer Science Unit, Kimberly Beck, Jessica F. Shumway Apr 2023

Geometry And Coding: Introducing An Interactive And Integrated Mathematics-Computer Science Unit, Kimberly Beck, Jessica F. Shumway

Publications

As part of a collaborative project between Utah State University, the Cache County School District, and Stanford, instructional units were designed for fifth-grade students. These units integrated math concepts of geometrical shapes and computer science concepts of sequences, conditionals, and loops. One component of the unit was implemented in math classrooms by math teachers, and the other component was implemented in computer labs. This presentation will focus on the math unit as presented at the National Council of Teachers of Mathematics (NCTM-V).


An Exploration Of Computational Text Analysis Of Co-Design Discourse In A Research-Practice Partnership, Mei Tan, Victor R. Lee Apr 2023

An Exploration Of Computational Text Analysis Of Co-Design Discourse In A Research-Practice Partnership, Mei Tan, Victor R. Lee

Publications

In combination with contextualized human interpretation, computational text analysis offers a quantitative approach to interrogating the nature of participation and social positioning in discourse. Using meeting transcript data from the development of a co-design research-practice partnership, we examine the roles and forms of participation that contribute to an effective collaboration between a multileveled school system and researcher partners. We apply computational methods to explore the language of co-design and multi-stakeholder perspectives in support of educational improvement science efforts and our theoretical understanding of partnership roles. Results indicate participation patterns align with documented roles in co- design partnerships and highlight the …


Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Fan Yang, Alan Z. Liu, Christopher J. Heale, Jonathan B. Snively, Wenjun Dong, Thomas Lund Mar 2023

Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Fan Yang, Alan Z. Liu, Christopher J. Heale, Jonathan B. Snively, Wenjun Dong, Thomas Lund

Publications

We conducted an analysis of the process of GW breaking from an energy perspective using the output from a high-resolution compressible atmospheric model. The investigation focused on the energy conversion and transfer that occur during the GW breaking. The total change in kinetic energy and the amount of energy converted to internal energy and potential energy within a selected region were calculated. Prior to GW breaking, part of the potential energy is converted into kinetic energy, most of which is transported out of the chosen region. After the GW breaks and turbulence develops, part of the potential energy is converted …


Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Alan Z. Liu, Fan Yang, Christopher James Heale, Jonathan Brian Snively, Wenjun Dong, Thomas Lund Mar 2023

Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Alan Z. Liu, Fan Yang, Christopher James Heale, Jonathan Brian Snively, Wenjun Dong, Thomas Lund

Publications

We conducted an analysis of the process of GW breaking from an energy perspective using the output from a high-resolution compressible atmospheric model. The investigation focused on the energy conversion and transfer that occur during the GW breaking. The total change in kinetic energy and the amount of energy converted to internal energy and potential energy within a selected region were calculated.
Prior to GW breaking, part of the potential energy is converted into kinetic energy, most of which is transported out of the chosen region. After the GW breaks and turbulence develops, part of the potential energy is converted …


The U.S. Integrated Ocean Observing System (Ioos): A Prototype User Valuation, Charles S. Colgan, Castelletto Anthony Mar 2023

The U.S. Integrated Ocean Observing System (Ioos): A Prototype User Valuation, Charles S. Colgan, Castelletto Anthony

Publications

The Integrated Ocean Observing System of the United States provides a large variety of oceanographic and related data at no charge through 11 Regional Associations. Since the data is distributed without price it is difficult to determine the economic value of the data. That value is useful in explaining and justifying the investment in ocean observing. This study applies discrete choice modeling to determine valuation of the data for users of data through the RA websites. The study found annual values of $190 to $220 million, and these estimates are considered highly conservative. A guide for replication of the valuation …


Periodicities And Plasma Density Structure Of Jupiter’S Dawnside Magnetosphere, Xuanye Ma, A.A. Schok, P.A. Delamere, B. Mino, P.A. Damiano, B. Zhang, A. Sciola Feb 2023

Periodicities And Plasma Density Structure Of Jupiter’S Dawnside Magnetosphere, Xuanye Ma, A.A. Schok, P.A. Delamere, B. Mino, P.A. Damiano, B. Zhang, A. Sciola

Publications

The ability to quantify variations in magnetic field topology and density within Jupiter’s magnetosphere is an important step in understanding the overall structure and dynamics. The Juno spacecraft has provided a rich data set in the dawnside magnetosphere. The recent Grid Agnostic MHD for Extended Research Applications (GAMERA) global simulation study by Zhang et al. (2021) showed a highly structured plasmadisc with closed magnetic field lines mapping between the outer dawn-tail flank and the high latitude polar region. To test these model predictions, we examined Juno’s magnetic field data and electron/energetic particle data to categorize portions of orbits 1-15 into …


Gravity Wave Drag Parameterizations For Earth’S Atmosphere, Christopher J. Heale, Christopher G. Kruse, Jadwiga H. Richter, M. Joan Alexander, Julio T. Bacmeister, Junhong Wei Jan 2023

Gravity Wave Drag Parameterizations For Earth’S Atmosphere, Christopher J. Heale, Christopher G. Kruse, Jadwiga H. Richter, M. Joan Alexander, Julio T. Bacmeister, Junhong Wei

Publications

Atmospheric gravity waves (GWs), or buoyancy waves, transport momentum and energy through Earth’s atmosphere. GWs are important at nearly all levels of the atmosphere, though, the momentum they transport is particularly important in general circulation of the middle and upper atmosphere. Primary sources of atmospheric GWs are flow over mountains, moist convection, and imbalances in jet/frontal systems. Secondary GWs can also be generated as a result of dissipation of a primary GWs. Gravity waves typically have horizontal wavelengths of 10’s to 100’s of kilometers, though, they can have scales of 1’s to 1000’s of kilometers as well. Current effective resolutions …


Chesapeake Bay Watershed Residents’ And Farmers’ Views On Urban And Suburban Growth, Edem Avemegah, Jessica D. Ulrich-Schad Jan 2023

Chesapeake Bay Watershed Residents’ And Farmers’ Views On Urban And Suburban Growth, Edem Avemegah, Jessica D. Ulrich-Schad

Publications

What the future of agriculture in the Chesapeake Bay Watershed (CBW) will look like is uncertain due to issues such as the loss of farmland to sprawling suburban development. In this rapidly urbanizing landscape, tension can also arise between farmers and their non-farm neighbors due to their proximity to each other. Understanding the concerns of these stakeholders regarding the urban and suburban growth and the potential problems that are likely to occur with farmers being in close contact with their non-farm neighbors is a good step in ensuring an economically thriving and environmentally beneficial agricultural system that all residents depend …