Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Impact Of Weather Factors On Airport Arrival Rates: Application Of Machine Learning In Air Transportation, Robert W. Maxson, Dothang Truong, Woojin Choi Dec 2023

Impact Of Weather Factors On Airport Arrival Rates: Application Of Machine Learning In Air Transportation, Robert W. Maxson, Dothang Truong, Woojin Choi

Publications

Weather is responsible for approximately 70% of air transportation delays in the National Airspace System, and delays resulting from convective weather alone cost airlines and passengers millions of dollars each year due to delays that could be avoided. This research sought to establish relationships between environmental variables and airport efficiency estimates by data mining archived weather and airport performance data at ten geographically and climatologically different airports. Several meaningful relationships were discovered from six out of ten airports using various machine learning methods within an overarching data mining protocol, and the developed models were tested using historical data.


Hyper-Local Weather Predictions With The Enhanced General Urban Area Microclimate Predictions Tool, Kevin A. Adkins, William Becker, Sricharan Ayyalasomayajula, Steven Lavenstein, Kleoniki Vlachou, David Miller, Marc Compere, Avinash Muthu Krishnan, Nickolas Macchiarella Jun 2023

Hyper-Local Weather Predictions With The Enhanced General Urban Area Microclimate Predictions Tool, Kevin A. Adkins, William Becker, Sricharan Ayyalasomayajula, Steven Lavenstein, Kleoniki Vlachou, David Miller, Marc Compere, Avinash Muthu Krishnan, Nickolas Macchiarella

Publications

This paper presents enhancements to, and the demonstration of, the General Urban area Microclimate Predictions tool (GUMP), which is designed to provide hyper-local weather predictions by combining machine-learning (ML) models and computational fluid dynamic (CFD) simulations. For the further development and demonstration of GUMP, the Embry–Riddle Aeronautical University (ERAU) campus was used as a test environment. Local weather sensors provided data to train ML models, and CFD models of urban- and suburban-like areas of ERAU’s campus were created and iterated through with a wide assortment of inlet wind speed and direction combinations. ML weather sensor predictions were combined with best-fit …


The Effect Of Advection On The Three Dimensional Distribution Of Turbulent Kinetic Energy And Its Generation In Idealized Tropical Cyclone Simulations, Joshua B. Wadler, David S. Nolan, Jun A. Zhang, Lynn K. Shay, Joseph B. Olsen, Joseph J. Cione May 2023

The Effect Of Advection On The Three Dimensional Distribution Of Turbulent Kinetic Energy And Its Generation In Idealized Tropical Cyclone Simulations, Joshua B. Wadler, David S. Nolan, Jun A. Zhang, Lynn K. Shay, Joseph B. Olsen, Joseph J. Cione

Publications

The distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal-mean radius of maximum wind speed at 1-km height. As in a previous study, the axisymmetric TKE decreases …