Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Molecules

2016

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Probing And Extracting The Structure Of Vibrating Sf₆ Molecules With Inner-Shell Photoelectrons, Ngoc-Ty Nguyen, R. R. Lucchese, C. D. Lin, Anh-Thu Le Jun 2016

Probing And Extracting The Structure Of Vibrating Sf₆ Molecules With Inner-Shell Photoelectrons, Ngoc-Ty Nguyen, R. R. Lucchese, C. D. Lin, Anh-Thu Le

Physics Faculty Research & Creative Works

We propose a scheme for probing the structure of vibrating molecules with photoelectrons generated from ultrashort soft-x-ray pulses. As an example we analyze below-100-eV photoelectrons liberated from the S(2p) orbital of vibrating SF₆ molecules to image very small structural changes of molecular vibration. In particular, photoionization cross sections and photoelectron angular distributions (PAD) at nonequilibrium geometries can be retrieved accurately with photoelectrons near the shape resonance at 13 eV. This is achieved with a pump-probe scheme, in which the symmetric stretch mode is first Raman excited predominantly by a relatively short laser pulse and then later probed at different time …


Analytical Model For Calibrating Laser Intensity In Strong-Field-Ionization Experiments, Song-Feng. Zhao, Anh-Thu Le, Cheng Jin, Xu Wang, C. D. Lin Feb 2016

Analytical Model For Calibrating Laser Intensity In Strong-Field-Ionization Experiments, Song-Feng. Zhao, Anh-Thu Le, Cheng Jin, Xu Wang, C. D. Lin

Physics Faculty Research & Creative Works

The interaction of an intense laser pulse with atoms and molecules depends extremely nonlinearly on the laser intensity. Yet experimentally there still exists no simple reliable methods for determining the peak laser intensity within the focused volume. Here we present a simple method, based on an improved Perelomov-Popov-Terent'ev model, that would allow the calibration of laser intensities from the measured ionization signals of atoms or molecules. The model is first examined by comparing ionization probabilities (or signals) of atoms and several simple diatomic molecules with those from solving the time-dependent Schrödinger equation. We then show the possibility of using this …