Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Ground State

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Virtual Resonant Emission And Oscillatory Long-Range Tails In Van Der Waals Interactions Of Excited States: Qedtreatment And Applications, Ulrich D. Jentschura, Chandra Mani Adhikari, Vincent Debierre Mar 2017

Virtual Resonant Emission And Oscillatory Long-Range Tails In Van Der Waals Interactions Of Excited States: Qedtreatment And Applications, Ulrich D. Jentschura, Chandra Mani Adhikari, Vincent Debierre

Physics Faculty Research & Creative Works

We report on a quantum electrodynamic (QED) investigation of the interaction between a ground state atom with another atom in an excited state. General expressions, applicable to any atom, are indicated for the long-range tails that are due to virtual resonant emission and absorption into and from vacuum modes whose frequency equals the transition frequency to available lower-lying atomic states. For identical atoms, one of which is in an excited state, we also discuss the mixing term that depends on the symmetry of the two-atom wave function (these evolve into either the gerade or the ungerade state for close approach), …


Long-Range Interactions Of Hydrogen Atoms In Excited States. I. 2s-1s Interactions And Dirac-Δ Perturbations, Chandra Mani Adhikari, Vincent Debierre, Arthur N. Matveev, Nikolai N. Kolachevsky, Ulrich D. Jentschura Feb 2017

Long-Range Interactions Of Hydrogen Atoms In Excited States. I. 2s-1s Interactions And Dirac-Δ Perturbations, Chandra Mani Adhikari, Vincent Debierre, Arthur N. Matveev, Nikolai N. Kolachevsky, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

The theory of the long-range interaction of metastable excited atomic states with ground-state atoms is analyzed. We show that the long-range interaction is essentially modified when quasidegenerate states are available for virtual transitions. A discrepancy in the literature regarding the van der Waals coefficient C6 (2S ;1 S ) describing the interaction of metastable atomic hydrogen ( 2 S state) with a ground-state hydrogen atom is resolved. In the the van der Waals range a0 ≪ R ≪ a0 / α , where a0 = ℏ / α m c is the Bohr radius and α …


Theory Of Noncontact Friction For Atom-Surface Interactions, Ulrich D. Jentschura, M. Janke, Maarten F M De Kieviet Aug 2016

Theory Of Noncontact Friction For Atom-Surface Interactions, Ulrich D. Jentschura, M. Janke, Maarten F M De Kieviet

Physics Faculty Research & Creative Works

The noncontact (van der Waals) friction is an interesting physical effect, which has been the subject of controversial scientific discussion. The direct friction term due to the thermal fluctuations of the electromagnetic field leads to a friction force proportional to 1/Z5 (where Z is the atom-wall distance). The backaction friction term takes into account the feedback of thermal fluctuations of the atomic dipole moment onto the motion of the atom and scales as 1/Z8. We investigate noncontact friction effects for the interactions of hydrogen, ground-state helium, and metastable helium atoms with α-quartz (SiO2), gold (Au), …


Comparison Of Experimental And Theoretical Fully Differential Cross Sections For Single Ionization Of The 2s And 2p States Of Li By O⁸⁺ Ions, Ebrahim Ghanbari-Adivi, Daniel Fischer, Natalia Ferreira, Johannes Goullon, Renate Hubele, Aaron Laforge, Michael Schulz, Don H. Madison Aug 2016

Comparison Of Experimental And Theoretical Fully Differential Cross Sections For Single Ionization Of The 2s And 2p States Of Li By O⁸⁺ Ions, Ebrahim Ghanbari-Adivi, Daniel Fischer, Natalia Ferreira, Johannes Goullon, Renate Hubele, Aaron Laforge, Michael Schulz, Don H. Madison

Physics Faculty Research & Creative Works

This paper presents a full three-dimensional (3D) comparison between experiment and theory for 24 MeV O8+ single ionization of the 2s ground state of lithium and the 2p excited state. Two theoretical approximations are examined: the three-body continuum distorted-wave (3DW) and three-body continuum distorted-wave-eikonal initial state (3DW-EIS). Normally, there is a significant difference between these two approaches and the 3DW-EIS is in much better agreement with experiment. In this case, there is very little difference between the two approaches and both are in very good agreement with experiment. For the excited 2p state, the 3D cross sections would exhibit …


Muonic Bound Systems, Virtual Particles, And Proton Radius, Ulrich D. Jentschura Jul 2015

Muonic Bound Systems, Virtual Particles, And Proton Radius, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

The proton radius puzzle questions the self-consistency of theory and experiment in light muonic and electronic bound systems. Here we summarize the current status of virtual particle models as well as Lorentz-violating models that have been proposed in order to explain the discrepancy. Highly charged one-electron ions and muonic bound systems have been used as probes of the strongest electromagnetic fields achievable in the laboratory. The average electric field seen by a muon orbiting a proton is comparable to hydrogenlike uranium and, notably, larger than the electric field in the most advanced strong-laser facilities. Effective interactions due to virtual annihilation …


Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison Dec 2014

Theoretical And Experimental (E, 2e) Study Of Electron-Impact Ionization Of Laser-Aligned Mg Atoms, Sadek Amami, Andrew J. Murray, Al Stauffer, Kate Nixon, Gregory Armstrong, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have performed calculations of the fully differential cross sections for electron-impact ionization of magnesium atoms. Three theoretical approximations, the time-dependent close coupling, the three-body distorted wave, and the distorted wave Born approximation, are compared with experiment in this article. Results will be shown for ionization of the 3s ground state of Mg for both asymmetric and symmetric coplanar geometries. Results will also be shown for ionization of the 3p state which has been excited by a linearly polarized laser which produces a charge cloud aligned perpendicular to the laser beam direction and parallel to the linear polarization. Theoretical and …


Evidence For Magnetic Clusters In Ni₁₋ₓvₓ Close To The Quantum Critical Concentration, R. Wang, S. Ubaid-Kassis, A. Schroeder, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster, I. Franke, J. S. Möller, Thomas Vojta Jul 2014

Evidence For Magnetic Clusters In Ni₁₋ₓvₓ Close To The Quantum Critical Concentration, R. Wang, S. Ubaid-Kassis, A. Schroeder, P. J. Baker, F. L. Pratt, S. J. Blundell, T. Lancaster, I. Franke, J. S. Möller, Thomas Vojta

Physics Faculty Research & Creative Works

The d-metal alloy Ni1-xVx undergoes a quantum phase transition from a ferromagnetic ground state to a paramagnetic ground state as the vanadium concentration x is increased. We present magnetization, ac-susceptibility and muon-spin relaxation data at several vanadium concentrations near the critical concentration xc ~ 11.6 % at which the onset of ferromagnetic order is suppressed to zero temperature. Below xc, the muon data reveal a broad magnetic field distribution indicative of a long-range ordered ferromagnetic state with spatial disorder. We show evidence of magnetic clusters in the ferromagnetic phase and close to the phase …


Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison Jun 2014

Fully Differential Cross Sections For Electron-Impact Excitation-Ionization Of Aligned D₂, Esam Ali, A. L. Harris, J. Lower, E. Weigold, Chuang-Gang Ning, Don H. Madison

Physics Faculty Research & Creative Works

We examine fully differential cross sections for 176 eV electron-impact dissociative excitation-ionization of orientated D2 for transitions to final ion states 2sσg, 2pσu, and 2pπu. In previous work [Phys. Rev. A 88, 062705 (2013)PLRAAN1050-294710.1103/PhysRevA.88.062705], we calculated these cross sections using the molecular four-body distorted wave (M4DW) method with the ground-state D2 wave function being approximated by a product of two Dyson 1s-type orbitals. The theoretical results were compared with experimental measurements for five different orientations of the target molecule (four in the scattering plane and one perpendicular to the scattering plane). For the unresolved …


Reexamining Blackbody Shifts For Hydrogenlike Ions, Ulrich D. Jentschura, Martin K. Haas Oct 2008

Reexamining Blackbody Shifts For Hydrogenlike Ions, Ulrich D. Jentschura, Martin K. Haas

Physics Faculty Research & Creative Works

We investigate blackbody-induced energy shifts for low-lying levels of atomic systems, with a special emphasis on transitions used in current and planned high-precision experiments on atomic hydrogen and ionized helium. Fine-structure- and Lamb-shift-induced blackbody shifts are found to increase with the square of the nuclear charge number, whereas blackbody shifts due to virtual transitions decrease with increasing nuclear charge as the fourth power of the nuclear charge. We also investigate the decay width acquired by the ground state of atomic hydrogen, due to interaction with blackbody photons. The corresponding width is due to an instability against excitation to higher excited …


Breakup Of H₂ In Singly Ionizing Collisions With Fast Protons: Channel-Selective Low-Energy Electron Spectra, Christina Dimopoulou, Robert Moshammer, Daniel Fischer, C. Hohr, Alexander Dorn, Pablo Daniel Fainstein, Jose R. Crespo Lopez-Urrutia, Claus Dieter Schroter, Holger Kollmus, Rido Mann, Siegbert Hagmann, Joachim Hermann Ullrich Sep 2004

Breakup Of H₂ In Singly Ionizing Collisions With Fast Protons: Channel-Selective Low-Energy Electron Spectra, Christina Dimopoulou, Robert Moshammer, Daniel Fischer, C. Hohr, Alexander Dorn, Pablo Daniel Fainstein, Jose R. Crespo Lopez-Urrutia, Claus Dieter Schroter, Holger Kollmus, Rido Mann, Siegbert Hagmann, Joachim Hermann Ullrich

Physics Faculty Research & Creative Works

The dissociation of H2 in singly ionizing collisions with fast protons was analyzed using channel-selective low-energy electron spectra. Dissociative and nondissociative single ionization of H2 by 6MeV proton impact was described in a kinematically by determining momentum vectors of electron and H+ fragment of H2+ target ion, respectively. The electron spectra exhibited role of autoionization of doubly and singly excited states of H2. The doubly and singly excited states of H2 involve coupling between electronic and nuclear motion of molecule.


New Limits On The Drift Of Fundamental Constants From Laboratory Measurements, Marc P. Fischer, Nikolai N. Kolachevsky, Marcus Zimmermann, Ronald Holzwarth, Th H. Udem, Theodor Wolfgang Hansch, Michel Abgrall, Jan Grunert, Ivan Maksimovic, Sebastien Bize, Harold Marion, Franck Pereira M Dos Santos, Pierre Lemonde, Giorgio Santarelli, Ph Laurent, Andre Clairon, Christophe Salomon, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel Jun 2004

New Limits On The Drift Of Fundamental Constants From Laboratory Measurements, Marc P. Fischer, Nikolai N. Kolachevsky, Marcus Zimmermann, Ronald Holzwarth, Th H. Udem, Theodor Wolfgang Hansch, Michel Abgrall, Jan Grunert, Ivan Maksimovic, Sebastien Bize, Harold Marion, Franck Pereira M Dos Santos, Pierre Lemonde, Giorgio Santarelli, Ph Laurent, Andre Clairon, Christophe Salomon, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel

Physics Faculty Research & Creative Works

We have remeasured the absolute 1S-2S transition frequency νH in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (-29 ± 57) Hz for the drift of νH with respect to the ground state hyperfine splitting νCs in 133Cs. Combining this result with the recently published optical transition frequency in 199Hg+ against νCs and a microwave 87Rb and 133Cs clock comparison, we deduce separate limits on α˙ / α = (-0.9 &plusm; 2.9) x 10-15 yr-1 and the fractional time …


Protonium Formation In The P̅-H Collision At Low Energies By A Diabatic Approach, M. Hesse, Anh-Thu Le, C. D. Lin May 2004

Protonium Formation In The P̅-H Collision At Low Energies By A Diabatic Approach, M. Hesse, Anh-Thu Le, C. D. Lin

Physics Faculty Research & Creative Works

We present a diabatization technique in combination with the recently developed hyperspherical close coupling (HSCC) method. In contrast to the strict diabatization, our simple diabatization procedure transforms only sharp avoided crossings in the adiabatic hyperspherical potential curves into real crossings. With this approach, the weak collision channels can be removed from the close-coupling calculations. This method is used to study the antiproton-hydrogen collision at low energies. In the case of a scaled down (anti)proton mass, we show that a 10-channel calculation is enough to obtain converged cross sections at low energies. The results also indicate that protonium formation occurs mostly …


Electron Self-Energy For The K And L Shells At Low Nuclear Charge, Ulrich D. Jentschura, Peter J. Mohr, Gerhard Soff Apr 2001

Electron Self-Energy For The K And L Shells At Low Nuclear Charge, Ulrich D. Jentschura, Peter J. Mohr, Gerhard Soff

Physics Faculty Research & Creative Works

A nonperturbative numerical evaluation of the one-photon electron self-energy for the K- and L-shell states of hydrogenlike ions with nuclear charge numbers Z =1 to 5 is described. Our calculation for the 1S1/2 state has a numerical uncertainty of 0.8 Hz in atomic hydrogen, and for the L-shell states (2S1/2 , 2P1/2 , and 2P3/2) the numerical uncertainty is 1.0 Hz. The method of evaluation for the ground state and for the excited states is described in detail. The numerical results are compared to results based on known terms in the expansion of the self-energy …