Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2010

Electron-impact ionization

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analog, Christopher J. Colyer, Susan M. Bellm, B. Lohmann, G. Friedrich Hanne, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning Sep 2010

Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analog, Christopher J. Colyer, Susan M. Bellm, B. Lohmann, G. Friedrich Hanne, Ola A. Al-Hagan, Don H. Madison, Chuangang Ning

Physics Faculty Research & Creative Works

Triple differential cross sections for the electron-impact ionization of the outer valence orbital of tetrahydrofuran have been measured using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and at an ejected electron energy of 10 eV, over a range of momentum transfers. The experimental results are compared with theoretical calculations carried out using the molecular three-body distorted wave model. The results obtained are important for gaining an understanding of electron driven processes at a molecular level and for modeling energy deposition in living tissue.


Electron-Impact-Ionization Cross Sections Of H₂ For Low Outgoing Electron Energies From 1 To 10 Ev, Ola A. Al-Hagan, Andrew James Murray, Christian V. Kaiser, James Colgan, Don H. Madison Mar 2010

Electron-Impact-Ionization Cross Sections Of H₂ For Low Outgoing Electron Energies From 1 To 10 Ev, Ola A. Al-Hagan, Andrew James Murray, Christian V. Kaiser, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

Theoretical and experimental fully differential cross sections are presented for electron-impact ionization of molecular hydrogen in a plane perpendicular to the incident beam direction. The experimental data exhibit a maximum for 1-eV electrons detected 180° apart and a minimum for 10-eV electrons. We investigate the different physical effects which cause back-to-back scattering and demonstrate that, over the energy range from 10 to 1 eV, a direct transition is observed from a region where Wannier threshold physics is essentially unimportant to where it completely dominates.