Open Access. Powered by Scholars. Published by Universities.^{®}
Physical Sciences and Mathematics Commons^{™}
Open Access. Powered by Scholars. Published by Universities.^{®}
 Discipline
 Keyword

 Molecules (5)
 Particle detectors (5)
 Fully differential cross sections (4)
 Helium (4)
 Photons (3)

 Selfenergy Corrections (3)
 Impact ionization (3)
 Superconductivity (3)
 Ionization (3)
 Particle Detectors (3)
 Differential cross section (3)
 Strong Field (3)
 Electrons (3)
 Experimental data (3)
 Nuclear Charge Numbers (3)
 Electronimpact ionization (2)
 Gravitational effects (2)
 Atomic physics (2)
 Electron impact (2)
 Charge transfer (2)
 Gravity waves (2)
 Ejected electrons (2)
 Computer simulation (2)
 Electron Models (2)
 Double ionization (2)
 Aligned Molecules (2)
 Distortedwave models (2)
 Electron Gfactor (2)
 Free electron lasers (2)
 Bound Electrons (2)
Articles 1  30 of 51
FullText Articles in Physical Sciences and Mathematics
Large Group Delay In A Microwave Metamaterial Analog Of Electromagnetically Induced Transparency, Lei Zhang, Philippe Tassin, Thomas Koschny, Cihan Kurter, Steven M. Anlage, C. M. Soukoulis
Large Group Delay In A Microwave Metamaterial Analog Of Electromagnetically Induced Transparency, Lei Zhang, Philippe Tassin, Thomas Koschny, Cihan Kurter, Steven M. Anlage, C. M. Soukoulis
Physics Faculty Research & Creative Works
We report on our experimental work concerning a planar metamaterial exhibiting classical electromagnetically induced transparency (EIT). Using a structure with two mirrored splitring resonators as the dark element and a cut wire as the radiative element, we demonstrate that an EITlike resonance can be achieved without breaking the symmetry of the structure. The mirror symmetry of the metamaterial's structural element results in a selection rule inhibiting magnetic dipole radiation for the dark element, and the increased quality factor leads to low absorption (<10%) and large group index (of the order of 30).
Reaction Dynamics In Double Ionization Of Helium By Electron Impact, Marcelo F. Ciappina, Michael Schulz, Tom Kirchner
Reaction Dynamics In Double Ionization Of Helium By Electron Impact, Marcelo F. Ciappina, Michael Schulz, Tom Kirchner
Physics Faculty Research & Creative Works
We present theoretical fully differential cross sections (FDCS) for double ionization of helium by 500 eV and 2 keV electron impact. Contributions from various reaction mechanisms to the FDCS were calculated separately and compared to experimental data. Our theoretical methods are based on the first Born approximation. Higherorder effects are incorporated using the Monte Carlo event generator technique. Earlier, we successfully applied this approach to double ionization by ion impact, and in the work reported here it is extended to electron impact. We demonstrate that at 500 eV impact energy, double ionization is dominated by higherorder mechanisms. Even at 2 ...
Direct Observation Of SpinPolarized Surface States In The Parent Compound Of A Topological Insulator Using Spin And AngleResolved Photoemission Spectroscopy In A MottPolarimetry Mode, David Hsieh, Lewis Andrew Wray, Dong Qian, Yuqi Xia, Jan Hugo Dil, Fabian Meier, Luc Patthey, Jurg Osterwalder, Gustav Bihlmayer, Yew San Hor, Robert Joseph Cava, Md Zahid Hasan
Direct Observation Of SpinPolarized Surface States In The Parent Compound Of A Topological Insulator Using Spin And AngleResolved Photoemission Spectroscopy In A MottPolarimetry Mode, David Hsieh, Lewis Andrew Wray, Dong Qian, Yuqi Xia, Jan Hugo Dil, Fabian Meier, Luc Patthey, Jurg Osterwalder, Gustav Bihlmayer, Yew San Hor, Robert Joseph Cava, Md Zahid Hasan
Physics Faculty Research & Creative Works
We report highresolution spinresolved photoemission spectroscopy (spinARPES) measurements on the parent compound Sb of the recently discovered threedimensional topological insulator Bi_{1x}Sb_{x} (Hsieh et al 2008 Nature 452 970, Hsieh et al 2009 Science 323 919). By modulating the incident photon energy, we are able to map both the bulk and the (111) surface band structure, from which we directly demonstrate that the surface bands are spin polarized by the spinorbit interaction and connect the bulk valence and conduction bands in a topologically nontrivial way. A unique asymmetric Dirac surface state gives rise to a ksplitting of its ...
Stability And Charge Transfer Levels Of Extrinsic Defects In Linbo₃, Haixuan Xu, Aleksandr V. Chernatynskiy, Donghwa Lee, Susan Sinnott, Venkatraman Gopalan, Volkmar Dierolf, Simon R. Phillpot
Stability And Charge Transfer Levels Of Extrinsic Defects In Linbo₃, Haixuan Xu, Aleksandr V. Chernatynskiy, Donghwa Lee, Susan Sinnott, Venkatraman Gopalan, Volkmar Dierolf, Simon R. Phillpot
Physics Faculty Research & Creative Works
The technologically important incorporation of extrinsic defects (Mg^{2+}, Fe^{2+}, Fe^{3+}, Er^{3+}, and Nd^{3+}) in LiNbO_{3} is investigated using densityfunctional theory combined with thermodynamic calculations. Defect energies, the charge compensation mechanisms, and charge transfer levels, are determined for congruent and stoichiometric compositions. In general, under congruent (Nb_{2}O_{5}rich) conditions impurities occupy lithium sites, compensated by lithium vacancies. Under stoichiometric (Li_{2}Orich) conditions, impurities occupy both lithium and niobium sites. The effects of the concentration of Mg on the dominant defect and site occupancy are analyzed. In addition, the thermal ionization energy ...
Search For Gravitational Waves From Compact Binary Coalescence In Ligo And Virgo Data From S5 And Vsr1, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.
Search For Gravitational Waves From Compact Binary Coalescence In Ligo And Virgo Data From S5 And Vsr1, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.
Physics Faculty Research & Creative Works
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer GravitationalWave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer GravitationalWave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M_{⊙}. No gravitational waves are identified. The cumulative 90%confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black holeneutron star systems, and binary black holes to be 8.7 x ...
Erratum: Determination Of Structure Parameters In StrongField Tunneling Ionization Theory Of Molecules (Physical Review A (2010) 81 (033423)), SongFeng Zhao, Cheng Jin, AnhThu Le, T. F. Jiang, C. D. Lin
Erratum: Determination Of Structure Parameters In StrongField Tunneling Ionization Theory Of Molecules (Physical Review A (2010) 81 (033423)), SongFeng Zhao, Cheng Jin, AnhThu Le, T. F. Jiang, C. D. Lin
Physics Faculty Research & Creative Works
There are several errors in Tables V and VI of our article. In Table V, the C_{2m} of the HOMO1 (1π) of CO molecule should be 0.014. In Table VI, the binding energies of 2pπ_{g} and 2pπ_{u} of H₂⁺ should be 0.2267 and 0.4288, respectively.
Dynamical Conductivity At The Dirty SuperconductorMetal Quantum Phase Transition, Adrian Del Maestro, Bernd Rosenow, Jose A. Hoyos, Thomas Vojta
Dynamical Conductivity At The Dirty SuperconductorMetal Quantum Phase Transition, Adrian Del Maestro, Bernd Rosenow, Jose A. Hoyos, Thomas Vojta
Physics Faculty Research & Creative Works
We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductormetal quantum phase transition. To this end we combine numerical calculations with analytical strongdisorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infiniterandomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.
Anderson Localization As PositionDependent Diffusion In Disordered Waveguides, Ben Payne, Alexey Yamilov, Sergey E. Skipetrov
Anderson Localization As PositionDependent Diffusion In Disordered Waveguides, Ben Payne, Alexey Yamilov, Sergey E. Skipetrov
Physics Faculty Research & Creative Works
We show that the recently developed selfconsistent theory of Anderson localization with a positiondependent diffusion coefficient is in quantitative agreement with the supersymmetry approach up to terms of the order of 1 / g^{2}_{0} (with g_{0} the dimensionless conductance in the absence of interference effects) and with largescale ab initio simulations of the classical wave transport in disordered waveguides, at least for g_{0} ≥ 0.5. In the latter case, agreement is found even in the presence of absorption. Our numerical results confirm that in open disordered media, the onset of Anderson localization can be viewed as positiondependent ...
Evaluation Of Computational Techniques For Solving The Boltzmann Transport Equation For Lattice Thermal Conductivity Calculations, Aleksandr V. Chernatynskiy, Simon R. Phillpot
Evaluation Of Computational Techniques For Solving The Boltzmann Transport Equation For Lattice Thermal Conductivity Calculations, Aleksandr V. Chernatynskiy, Simon R. Phillpot
Physics Faculty Research & Creative Works
Three methods for computing thermal conductivity from lattice dynamics (the iterative method, the variational method, and the relaxationtime approximation) are compared for the prototypical case of solid argon. The iterative method is found to produce results in close agreement with GreenKubo moleculardynamics simulations, a formally correct method for computing thermal conductivity. The variational method and relaxationtime approximation are found to underestimate the thermal conductivity. The relationship among the methods is established; a combination of the iterative and variational methods is found to have a fastest convergence. Formal convergence of the iterative method is demonstrated and a simple mixing rule is ...
Baryon Acoustic Oscillations In 2d: Modeling RedshiftSpace Power Spectrum From Perturbation Theory, Atsushi Taruya, Takahiro Nishimichi, Shun Saito
Baryon Acoustic Oscillations In 2d: Modeling RedshiftSpace Power Spectrum From Perturbation Theory, Atsushi Taruya, Takahiro Nishimichi, Shun Saito
Physics Faculty Research & Creative Works
We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and FingerofGod effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the ...
First Search For Gravitational Waves From The Youngest Known Neutron Star, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.
First Search For Gravitational Waves From The Youngest Known Neutron Star, J. Abadie, Marco Cavaglia, For Full List Of Authors, See Publisher's Website.
Physics Faculty Research & Creative Works
We present a search for periodic gravitational waves from the neutron star in the supernova remnant Cassiopeia A. The search coherently analyzes data in a 12 day interval taken from the fifth science run of the Laser Interferometer GravitationalWave Observatory. It searches gravitationalwave frequencies from 100 to 300 Hz and covers a wide range of first and second frequency derivatives appropriate for the age of the remnant and for different spindown mechanisms. No gravitationalwave signal was detected. Within the range of search frequencies, we set 95% confidence upper limits of (0.71.2) x 10^{24} on the intrinsic gravitationalwave ...
Effect Of An Improved Molecular Potential On StrongField Tunneling Ionization Of Molecules, SongFeng Zhao, Cheng Jin, AnhThu Le, C. D. Lin
Effect Of An Improved Molecular Potential On StrongField Tunneling Ionization Of Molecules, SongFeng Zhao, Cheng Jin, AnhThu Le, C. D. Lin
Physics Faculty Research & Creative Works
We study the effect of oneelectron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified LeeuwenBaerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.
Tracing Multiple Scattering Patterns In Absolute (E, 2e) Cross Sections For H₂ And He Over A 4Π Solid Angle, Xueguang Ren, Arne Senftleben, Thomas Pflüger, Alexander Dorn, James Colgan, Michael S. Pindzola, Ola A. AlHagan, Don H. Madison, Igor Bray, Dmitry V. Fursa, Joachim Hermann Ullrich
Tracing Multiple Scattering Patterns In Absolute (E, 2e) Cross Sections For H₂ And He Over A 4Π Solid Angle, Xueguang Ren, Arne Senftleben, Thomas Pflüger, Alexander Dorn, James Colgan, Michael S. Pindzola, Ola A. AlHagan, Don H. Madison, Igor Bray, Dmitry V. Fursa, Joachim Hermann Ullrich
Physics Faculty Research & Creative Works
Absolutely normalized (e,2e) measurements for H_{2} and He covering the full solid angle of one ejected electron are presented for 16 eV sum energy of both final state continuum electrons. For both targets rich crosssection structures in addition to the binary and recoil lobes are identified and studied as a function of the fixed electron's emission angle and the energy sharing among both electrons. For H_{2} their behavior is consistent with multiple scattering of the projectile as discussed before. For He the binary and recoil lobes are significantly larger than for H_{2} and partly cover ...
Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analog, Christopher J. Colyer, Susan M. Bellm, B. Lohmann, G. Friedrich Hanne, Ola A. AlHagan, Don H. Madison, Chuangang Ning
Dynamical (E, 2e) Studies Using Tetrahydrofuran As A Dna Analog, Christopher J. Colyer, Susan M. Bellm, B. Lohmann, G. Friedrich Hanne, Ola A. AlHagan, Don H. Madison, Chuangang Ning
Physics Faculty Research & Creative Works
Triple differential cross sections for the electronimpact ionization of the outer valence orbital of tetrahydrofuran have been measured using the (e, 2e) technique. The measurements have been performed with coplanar asymmetric kinematics, at an incident electron energy of 250 eV and at an ejected electron energy of 10 eV, over a range of momentum transfers. The experimental results are compared with theoretical calculations carried out using the molecular threebody distorted wave model. The results obtained are important for gaining an understanding of electron driven processes at a molecular level and for modeling energy deposition in living tissue.
SelfImaging Of Molecules From Diffraction Spectra By LaserInduced Rescattering Electrons, Junliang Xu, Zhangjin Chen, AnhThu Le, C. D. Lin
SelfImaging Of Molecules From Diffraction Spectra By LaserInduced Rescattering Electrons, Junliang Xu, Zhangjin Chen, AnhThu Le, C. D. Lin
Physics Faculty Research & Creative Works
We study highenergy angleresolved photoelectron spectra of molecules in strong fields. In an oscillating laser electric field, electrons released earlier in the pulse may return to recollide with the target ion, in a process similar to scattering by laboratory prepared electrons. If midinfrared lasers are used, we show that the images generated by the returning electrons are similar to images observed in typical gasphase electron diffraction (GED). These spectra can be used to retrieve the positions of atoms in a molecule as in GED. Since infrared laser pulses of durations of a few femtoseconds are already available today, the study ...
Relation Between Transmission And Energy Stored In Random Media With Gain, Ben Payne, Jonathan Andreasen, Hui Cao, Alexey Yamilov
Relation Between Transmission And Energy Stored In Random Media With Gain, Ben Payne, Jonathan Andreasen, Hui Cao, Alexey Yamilov
Physics Faculty Research & Creative Works
In this work, we investigate a possibility of using the ratio between optical transmission, T, and energy stored inside the system, E, as a quantitative measure of the enhanced mesoscopic corrections to diffusive transport of light through a random medium with gain. We obtain an expression for T/E as a function of amplification strength in the diffusive approximation and show that it does not a have tendency to diverge when the threshold for random lasing is approached, as both T and E do. Furthermore, we find that a change in T/E signifies a change in the electric field ...
Theoretical Fully Differential Cross Sections For DoubleChargeTransfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison
Theoretical Fully Differential Cross Sections For DoubleChargeTransfer Collisions, Allison L. Harris, Jerry Peacher, Don H. Madison
Physics Faculty Research & Creative Works
We present a fourbody model for double charge transfer, called the fourbody doublecapture model. This model explicitly treats all four particles in the collision, and we apply it here to fully differential cross sections (FDCSs) for proton+helium collisions. The effects of initial and finalstate electron correlations are studied, as well as the role of the projectilenucleus interaction. We also present results for proton+helium single capture, as well as singlecapture:doublecapture ratios of FDCSs.
Polarization And Ellipticity Of HighOrder Harmonics From Aligned Molecules Generated By Linearly Polarized Intense Laser Pulses, AnhThu Le, R. R. Lucchese, C. D. Lin
Polarization And Ellipticity Of HighOrder Harmonics From Aligned Molecules Generated By Linearly Polarized Intense Laser Pulses, AnhThu Le, R. R. Lucchese, C. D. Lin
Physics Faculty Research & Creative Works
We present theoretical calculations for polarization and ellipticity of highorder harmonics from aligned N₂, CO₂, and O₂ molecules generated by linearly polarized lasers. Within the rescattering model, the two polarization amplitudes of the harmonics are determined by the photorecombination amplitudes for photons emitted with polarization parallel or perpendicular to the direction of the same returning electron wave packet. Our results show clear speciesdependent polarization states, in excellent agreement with experiments. We further note that the measured polarization ellipse of the harmonic furnishes the needed parameters for a "complete" experiment in molecules.
Doping Dependence Of SpinLattice Coupling And TwoDimensional Ordering In Multiferroic Hexagonal Y₁₋ₓLuₓMno₃ (0 ≤ X ≤ 1), Junghwan Park, Seongsu Lee, Misun Kang, Kwanghyun Jang, Changhee Lee, Sergey V. Streltsov, Vladimir V. Mazurenko, Maria V. Valentyuk, Julia E. Medvedeva, Takashi Kamiyama, Jegeun Park
Doping Dependence Of SpinLattice Coupling And TwoDimensional Ordering In Multiferroic Hexagonal Y₁₋ₓLuₓMno₃ (0 ≤ X ≤ 1), Junghwan Park, Seongsu Lee, Misun Kang, Kwanghyun Jang, Changhee Lee, Sergey V. Streltsov, Vladimir V. Mazurenko, Maria V. Valentyuk, Julia E. Medvedeva, Takashi Kamiyama, Jegeun Park
Physics Faculty Research & Creative Works
We have examined a complete phase diagram of Y_{1x} Lu _{x}MnO_{3} with 0≤x≤1 by using bulk measurements and neutrondiffraction studies. With increasing Lu concentration, CurieWeiss temperature and Neel temperature are found to increase continuously while the twodimensional nature of shortrange magnetic correlation persists even in the paramagnetic phase throughout the entire doping range. At the same time, the lattice constants and the unitcell volume get contracted with Lu doping, i.e., chemical pressure effect. This decrease in the lattice constants and the unitcell volume then leads naturally to an increased magnetic exchange interaction as found ...
Anomalously Elastic Intermediate Phase In Randomly Layered Superfluids, Superconductors, And Planar Magnets, Priyanka Mohan, Paul M. Goldbart, Rajesh Narayanan, John Toner, Thomas Vojta
Anomalously Elastic Intermediate Phase In Randomly Layered Superfluids, Superconductors, And Planar Magnets, Priyanka Mohan, Paul M. Goldbart, Rajesh Narayanan, John Toner, Thomas Vojta
Physics Faculty Research & Creative Works
We show that layered quenched randomness in planar magnets leads to an unusual intermediate phase between the conventional ferromagnetic lowtemperature and paramagnetic hightemperature phases. In this intermediate phase, which is part of the Griffiths region, the spinwave stiffness perpendicular to the random layers displays anomalous scaling behavior, with a continuously variable anomalous exponent, while the magnetization and the stiffness parallel to the layers both remain finite. Analogous results hold for superfluids and superconductors. We study the two phase transitions into the anomalous elastic phase, and we discuss the universality of these results, and implications of finite sample size as well ...
Astronomy's New Messengers: A Traveling Exhibit To Reach Out To A Young Adult Audience, Marco Cavaglia, Martin Hendry, Szabolocs Marka, David H. Reitze, Keith Riles
Astronomy's New Messengers: A Traveling Exhibit To Reach Out To A Young Adult Audience, Marco Cavaglia, Martin Hendry, Szabolocs Marka, David H. Reitze, Keith Riles
Physics Faculty Research & Creative Works
The Laser Interferometer Gravitationalwave Observatory exhibit Astronomy's New Messengers: Listening to the Universe with Gravitational Waves is traveling to colleges, universities, museums and other public institutions throughout the United States. In 2010, an extended version of this exhibit will appear in a New York City venue that is accessible to a large and diverse cross section of the general public. Astronomy's New Messengers primarily communicates with an adolescent and young adult audience, potentially inspiring them into the field of science. Acknowledging that this audience is traditionally a difficult one to attract, the exhibit publicly announces itself in a ...
Differential Cross Sections For NonSequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter
Differential Cross Sections For NonSequential Double Ionization Of He By 52 Ev Photons From The Free Electron Laser In Hamburg, Flash, Moritz Kurka, Johannes Feist, Daniel A. Horner, Artem Rudenko, Yuhai Jiang, Kai Uwe Kuhnel, Lutz M. Foucar, Thomas N. Rescigno, Clyde William Mccurdy, Renate Pazourek, Stefan Nagele, Michael Schulz, Oliver Herrwerth, Matthias Lezius, Matthias F. Kling, Markus S. Schoffler, Ali Belkacem, Stefan Dusterer, Rolf Treusch, Barry I. Schneider, Lee A. Collins, Joachim Burgdorfer, Claus Dieter Schroter
Physics Faculty Research & Creative Works
Twophoton double ionization of He is studied at the Free Electron Laser in Hamburg (FLASH) by inspecting He^{2+} momentum (P(He ^{2+})) distributions at 52 eV photon energy. We demonstrate that recoil ion momentum distributions can be used to infer information about highly correlated electron dynamics and find the first experimental evidence for 'virtual sequential ionization'. The experimental data are compared with the results of two calculations, both solving the timedependent Schrodinger equation. We find good overall agreement between experiment and theory, with significant differences for cuts along the polarization direction that cannot be explained by the experimental resolution ...
Fivefold Differential Cross Sections For GroundState Ionization Of Aligned H₂ By Electron Impact, Arne Senftleben, Ola A. AlHagan, Thomas Pfluger, Xueguang Ren, Don H. Madison, Alexander Dorn, Joachim Hermann Ullrich
Fivefold Differential Cross Sections For GroundState Ionization Of Aligned H₂ By Electron Impact, Arne Senftleben, Ola A. AlHagan, Thomas Pfluger, Xueguang Ren, Don H. Madison, Alexander Dorn, Joachim Hermann Ullrich
Physics Faculty Research & Creative Works
We discuss the ionization of aligned hydrogen molecules into their ionic ground state by 200 eV electrons. Using a reaction microscope, the complete electron scattering kinematics is imaged over a large solid angle. Simultaneously, the molecular alignment is derived from postcollision dissociation of the residual ion. It is found that the ionization cross section is maximized for small angles between the internuclear axis and the momentum transfer. Fivefold differential cross sections (5DCSs) reveal subtle differences in the scattering process for the distinct alignments. We compare our observations with theoretical 5DCSs obtained with an adapted molecular threebody distorted wave model that ...
Anderson Localization As PositionDependent Diffusion In Disordered Waveguides, Ben Payne, Alexey Yamilov, Sergey E. Skipetrov
Anderson Localization As PositionDependent Diffusion In Disordered Waveguides, Ben Payne, Alexey Yamilov, Sergey E. Skipetrov
Physics Faculty Research & Creative Works
We show that the recently developed selfconsistent theory of Anderson localization with a positiondependent diffusion coefficient is in quantitative agreement with the supersymmetry approach up to terms of the order of 1/g _{0}^{2} (with g_{0} the dimensionless conductance in the absence of interference effects) and with largescale ab initio simulations of the classical wave transport in disordered waveguides, at least for g _{0} ~ 0.5. In the latter case, agreement is found even in the presence of absorption. Our numerical results confirm that in open disordered media, the onset of Anderson localization can be viewed as positiondependent ...
OrderDependent Mappings: StrongCoupling Behavior From WeakCoupling Expansions In NonHermitian Theories, Jean ZinnJustin, Ulrich D. Jentschura
OrderDependent Mappings: StrongCoupling Behavior From WeakCoupling Expansions In NonHermitian Theories, Jean ZinnJustin, Ulrich D. Jentschura
Physics Faculty Research & Creative Works
A long time ago, it has been conjectured that a Hamiltonian with a potential of the form x ^{2}+ivx ^{3}, v real, has a real spectrum. This conjecture has been generalized to a class of the socalled PT symmetric Hamiltonians and some proofs have been given. Here, we show by numerical investigation that the divergent perturbation series can be summed efficiently by an orderdependent mapping (ODM) in the whole complex plane of the coupling parameter v ^{2}, and that some information about the location of levelcrossing singularities can be obtained in this way. Furthermore, we discuss to which accuracy ...
Scaled VaporToLiquid Nucleation In A LennardJones System, Barbara N. Hale, Mark Thomason
Scaled VaporToLiquid Nucleation In A LennardJones System, Barbara N. Hale, Mark Thomason
Physics Faculty Research & Creative Works
Scaling of the homogenous vaportoliquid nucleation rate, J, is observed in a model LennardJones (LJ) system. The model uses Monte Carlo simulationgenerated small cluster growth to decay rate constant ratios and the kinetic steadystate nucleation rate formalism to determine J at four temperatures below the LJ critical temperature, T_{c}. When plotted vs the scaled supersaturation, lnS/[T_{c}/T1]^{3/2}, the values of log J are found to collapse onto a single line. A similar scaling has been observed for the experimental nucleation rate data of water and toluene.
Comment On "Coincidence Studies Of He Ionized By C⁶⁺, Au²⁴⁺, And Au⁵³⁺", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich
Comment On "Coincidence Studies Of He Ionized By C⁶⁺, Au²⁴⁺, And Au⁵³⁺", Michael Schulz, Robert Moshammer, Daniel Fischer, Joachim Hermann Ullrich
Physics Faculty Research & Creative Works
In a recent article, McGovern [Phys. Rev. APLRAAN1050294710.1103/PhysRevA. 81.042704 81, 042704 (2010)] suggested that the normalization of our measured fully differential cross section for ionization of helium by Au^{53+} needs to be checked. In this comment we confirm that the normalization of the published data is correct. Furthermore, we point out that, for a conclusive comparison between experiment and theory, an accurate inclusion of the experimental resolution using correct experimental parameters in the calculation is important.
Phase Transitions Of The Generalized Contact Process With Two Absorbing States, Man Young Lee, Thomas Vojta
Phase Transitions Of The Generalized Contact Process With Two Absorbing States, Man Young Lee, Thomas Vojta
Physics Faculty Research & Creative Works
We investigate the generalized contact process with two absorbing states in one space dimension by means of largescale Monte Carlo simulations. Treating the creation rate of active sites between inactive domains as an independent parameter leads to a rich phase diagram. In addition to the conventional active and inactive phases we find a parameter region where the simple contact process is inactive, but an infinitesimal creation rate at the boundary between inactive domains is sufficient to take the system into the active phase. Thus, the generalized contact process has two different phase transition lines. The point separating them shares some ...
Miniaturized Superconducting Metamaterials For Radio Frequencies, Cihan Kurter, John A. Abrahams, Steven Mark Anlage
Miniaturized Superconducting Metamaterials For Radio Frequencies, Cihan Kurter, John A. Abrahams, Steven Mark Anlage
Physics Faculty Research & Creative Works
We have developed a lowloss, ultrasmall radio frequency (rf) metamaterial operating at ~76 MHz. This miniaturized medium is made up of planar spiral elements with diameter as small as ~λ/658 (λ is the free space wavelength), fashioned from Nb thin films on quartz substrates. The transmission data are examined below and above the superconducting transition temperature of Nb for both a single spiral and a one dimensional array. The validity of the design is tested through numerical simulations and good agreement is found. We discuss how superconductors enable such a compact design in the rf with high loadedquality factor ...
Counterintuitive Consequence Of Heating In StronglyDriven Intrinsic Junctions Of Bi₂Sr₂Cacu₂O_{8+Δ} Mesas, Cihan Kurter, Lutfi Ozyuzer, Thomas Proslier, John F. Zasadzinski, David G. Hinks, Kenneth E. Gray
Counterintuitive Consequence Of Heating In StronglyDriven Intrinsic Junctions Of Bi₂Sr₂Cacu₂O8+Δ Mesas, Cihan Kurter, Lutfi Ozyuzer, Thomas Proslier, John F. Zasadzinski, David G. Hinks, Kenneth E. Gray
Physics Faculty Research & Creative Works
Anomalously high and sharp peaks in the conductance of intrinsic Josephson junctions in Bi_{2} Sr_{2} CaCu_{2} O _{8+δ} (Bi2212) mesas have been commonly interpreted as superconducting energy gaps but here we show they are a result of strong selfheating. This conclusion follows directly from a comparison to the equilibrium gap measured by tunneling in single break junctions on equivalent crystals. As the number of junctions in the mesa, N, and thus heating increase, the peak voltages decrease and the peak width abruptly sharpens for N≥12. Clearly these widely variable features vs N cannot all represent ...