Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Computer Sciences

Molecular Orbitals

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Comparison Of Experimental And Theoretical Triple Differential Cross Sections For The Single Ionization Of Co₂ (1Πg) By Electron Impact, Zehra N. Ozer, Esam Ali, Mevlut Dogan, Murat Yavuz, Osman Alwan, Adnan Naja, Ochbadrakh Chuluunbaatar, Boghos B. Joulakian, Chuan-Gang Ning, James Colgan, Don H. Madison Jun 2016

Comparison Of Experimental And Theoretical Triple Differential Cross Sections For The Single Ionization Of Co₂ (1Πg) By Electron Impact, Zehra N. Ozer, Esam Ali, Mevlut Dogan, Murat Yavuz, Osman Alwan, Adnan Naja, Ochbadrakh Chuluunbaatar, Boghos B. Joulakian, Chuan-Gang Ning, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

Experimental and theoretical triple differential cross sections for intermediate-energy (250 eV) electron-impact single ionization of the CO2 are presented for three fixed projectile scattering angles. Results are presented for ionization of the outermost 1πg molecular orbital of CO2 in a coplanar asymmetric geometry. The experimental data are compared to predictions from the three-center Coulomb continuum approximation for triatomic targets, and the molecular three-body distorted wave (M3DW) model. It is observed that while both theories are in reasonable qualitative agreement with experiment, the M3DW is in the best overall agreement with experiment.


Comparison Of Experimental And Theoretical Electron-Impact-Ionization Triple-Differential Cross Sections For Ethane, Esam Ali, Kate Nixon, Andrw Murray, Chuangang Ning, James Colgan, Don H. Madison Oct 2015

Comparison Of Experimental And Theoretical Electron-Impact-Ionization Triple-Differential Cross Sections For Ethane, Esam Ali, Kate Nixon, Andrw Murray, Chuangang Ning, James Colgan, Don H. Madison

Physics Faculty Research & Creative Works

We have recently examined electron-impact ionization of molecules that have one large atom at the center, surrounded by H nuclei (H2O, NH3, CH4). All of these molecules have ten electrons; however, they vary in their molecular symmetry. We found that the triple-differential cross sections (TDCSs) for the highest occupied molecular orbitals (HOMOs) were similar, as was the character of the HOMO orbitals which had a p-type "peanut" shape. In this work, we examine ethane (C2H6) which is a molecule that has two large atoms surrounded by H nuclei, so that …


Electron- And Photon-Impact Ionization Of Furfural, D. B. Jones, E. Ali, K. L. Nixon, P. Limão-Vieira, M.-J. Hubin-Franskin, J. Delwiche, C. G. Ning, J. Colgan, Andrew J. Murray, Don H. Madison, M .J. Brunger Jan 2015

Electron- And Photon-Impact Ionization Of Furfural, D. B. Jones, E. Ali, K. L. Nixon, P. Limão-Vieira, M.-J. Hubin-Franskin, J. Delwiche, C. G. Ning, J. Colgan, Andrew J. Murray, Don H. Madison, M .J. Brunger

Physics Faculty Research & Creative Works

The He(i) photoelectron spectrum of furfural has been investigated, with its vibrational structure assigned for the first time. The ground and excited ionized states are assigned through ab initio calculations performed at the outer-valence Green's function level. Triple differential cross sections (TDCSs) for electron-impact ionization of the unresolved combination of the 4a" + 21a' highest and next-highest occupied molecular orbitals have also been obtained. Experimental TDCSs are recorded in a combination of asymmetric coplanar and doubly symmetric coplanar kinematics. The experimental TDCSs are compared to theoretical calculations, obtained within a molecular 3-body distorted wave framework that employed either an orientation …


Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison Jun 2014

Theoretical Triple-Differential Cross Sections Of A Methane Molecule By A Proper-Average Method, Hari Chaluvadi, C. G. Ning, Don H. Madison

Physics Faculty Research & Creative Works

For the last few years, our group has calculated cross sections for electron-impact ionization of molecules using the molecular three-body distorted-wave approximation coupled with the orientation-averaged molecular orbital (OAMO) approximation. This approximation was very successful for calculating ionization cross sections for hydrogen molecules and to a lesser extent nitrogen molecules. Recently we used the approximation to calculate single ionization cross sections for the 1t2 state of methane (CH4) and we found major discrepancies with the experimental data. Here we investigate the validity of the OAMO approximation by calculating cross sections that have been properly averaged over all …