Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

The Mechanical Properties Of Individual, Electrospun Fibrinogen Fibers, Christine C. Helms, Corentin Coulais, Manoj Namboothiry, David L. Carroll, Roy R. Hantgan, Martin Guthold Feb 2009

The Mechanical Properties Of Individual, Electrospun Fibrinogen Fibers, Christine C. Helms, Corentin Coulais, Manoj Namboothiry, David L. Carroll, Roy R. Hantgan, Martin Guthold

Physics Faculty Publications

We used a combined atomic force microscope (AFM)/fluorescence microscope technique to study the mechanical properties of individual, electrospun fibrinogen fibers in aqueous buffer. Fibers (average diameter 208 nm) were suspended over 12 μm-wide grooves in a striated, transparent substrate. The AFM, situated above the sample, was used to laterally stretch the fibers and to measure the applied force. The fluorescence microscope, situated below the sample, was used to visualize the stretching process. The fibers could be stretched to 2.3 times their original length before breaking; the breaking stress was 22·106 Pa. We collected incremental stress-strain curves to determine the …


Algorithm For The Analysis Of Tryptophan Flourescence Spectra And Their Correlation With Protein Structural Parameters, John Hixon, Yana K. Reshetnyak Jan 2009

Algorithm For The Analysis Of Tryptophan Flourescence Spectra And Their Correlation With Protein Structural Parameters, John Hixon, Yana K. Reshetnyak

Physics Faculty Publications

The fluorescence properties of tryptophan residues are sensitive to the microenvironment of fluorophores in proteins. Therefore, fluorescence characteristics are widely used to study structural transitions in proteins. However, the decoding of the structural information from spectroscopic data is challenging. Here we present a review of approaches developed for the decomposition of multi-component protein tryptophan fluorescence spectra and correlation of these spectral parameters with protein structural properties.


Simultaneous Trapping Of Rubidium And Metastable Argon In A Magneto-Optical Trap, C. I. Sukenik, H. C. Busch Nov 2002

Simultaneous Trapping Of Rubidium And Metastable Argon In A Magneto-Optical Trap, C. I. Sukenik, H. C. Busch

Physics Faculty Publications

We have simultaneously confined rubidium and metastable argon in a dual-species magneto-optical trap (MOT). Here a binary mixture of atomic species from different groups of the periodic table have been optically confined at ultracold temperatures. We describe the apparatus and characterize the individual, single species MOTs and the dual-species MOT. Both fluorescence and ion production are monitored. With both species trapped, we observe ~5106 85Rb atoms and ~2106 40Ar* atoms. Realization of the dual-species trap opens the way for detailed studies of Penning and associative ionization, photoassociative spectroscopy, and eventually for the production of bound, ultracold RbAr molecules.