Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Physical Sciences and Mathematics

Building Structures From Mycelium, Noah M. Brown Dec 2022

Building Structures From Mycelium, Noah M. Brown

Physics

The purpose of this project was to develop a method for creating bricks from mycelium and agricultural waste. The bulk of the research happened in two parts, the first part being a period in which different substrates, strains, and methods were used build the bricks. This research took place in San Luis Obispo and was aided by a group of students in PSC392 under Dr. Pete Schwartz in early 2022. After developing a method for constructing these bricks, the research was moved to St. Thomas, Jamaica, in collaboration with an ecovillage called The Source Farm from July to September. The …


An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez Sep 2022

An Inexpensive Maximum Power Point Tracking System For An Insulated Solar Electric Cooker Using An Off-The-Shelf Buck Converter, Andrew A. Perez

Physics

A specialized control circuit using an off-the-shelf buck converter is built for an Insulated Solar Electric Cooker (ISEC). Cost and efficient power delivery are the focus. An ISEC is synonymous to a direct load heat resistor, allowing a specific maximum power point tracking (MPPT) algorithm and fewer components. Only a microcontroller, voltage sensor, and digital-to-analog converter are used with the buck converter to maximize the power delivered by a 100W solar panel for the 3.3Ω load.


Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd Sep 2022

Developing Positive Thermal Coefficient (Ptc) Heaters For Solar Electric Cooking, Katarina Ivana Brekalo, Andrew Shepherd

Physics

Positive Thermal Coefficients, PTCs, are materials that abruptly change in resistance in response to changes in temperature. The purpose of this experiment is to explore the viability of using the switching type ceramic PTC thermistor as a replacement for current resistive heaters. These types of PTCs have a nonlinear change in resistance with increases in temperature. This device will be used as a temperature-controlling heating element intended to power an Insulated Solar Electric Cooker (ISEC). The ISEC is designed to cook meals throughout the day for impacted communities as an alternative cooking method that doesn’t require biofuel as an energy …


Solid Thermal Storage As An Energy Storage Device In Insulated Solar Electric Cookers: Thermal Modeling And Experiment, Michael Antonio Fernandez Jun 2022

Solid Thermal Storage As An Energy Storage Device In Insulated Solar Electric Cookers: Thermal Modeling And Experiment, Michael Antonio Fernandez

Physics

The use of solid thermal storage (STS) as an energy storage device in insulated solar electric cookers (ISEC) was explored using a thermal simulation before retrofitting an existing cooker without energy storage and testing it under several conditions. STS sizing, material selection, and geometry were examined from both theoretical and practical perspectives and re-examined following experimental results. Characterization of the system’s thermal interfaces and methods to improve their thermal conductivities were investigated resulting in several performance enhancements to the system.


Direct Drive Solar Panel Control Circuit, Marcorios Bekheit May 2021

Direct Drive Solar Panel Control Circuit, Marcorios Bekheit

Physics

A control circuit is built for insulated solar electric cookers (ISEC). Power delivery and temperature safety are the focus. Using a maximum power point tracking (MPPT) algorithm, Arduino Nano, voltage and current sensors, and a buck converter, the solar panel’s output power was maximized for a direct load heat resistor with 3.5Ω for a range of solar intensities. Using a resistance temperature detector, a temperature sensor is built for safety shutoff.


Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami Aug 2020

Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami

Physics

In developing countries, the use of wood burning fires for cooking is cause for illness and death. With this in mind, research was conducted to develop a solar cooking device capable of cooking of soup within 15 mins in order to reduce the negative impacts of cooking with wood. Current methods of solar-based cooking, such as solar concentrators and solar tube ovens, are impractical. A small solar panel is a cost-effective way to produce energy but will not produce enough power to cook within a reasonable amount of time. Even if it is assumed that all of the energy produced …


Corrosion Prevention, Matthew Walker Jun 2020

Corrosion Prevention, Matthew Walker

Physics

In Insulated Solar Electric Cooking (ISEC), heating is done by passing current through a chain of diodes directly connected to a solar panel (Gius et al, 2019). It is crucially important that the wires remain conducting, but not conduct to any metal surface that might short the heating circuit. Corrosion of any wires will cause a loosening of the mechanical (twisted) wire connection and could result in a loss of electrical connection completely, or undesired increased resistance.


An Investigation Of Diode Failure, Nicholas James Adams May 2020

An Investigation Of Diode Failure, Nicholas James Adams

Physics

Solar electricity can be used to cheaply cook food and charge electronic devices. We investigate the viability of using diodes as heating elements for insulated solar electric cooking (ISEC). In addition, information on designing and constructing ISEC compatible phone chargers and rechargeable LED lighting systems is included.


Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl Mar 2020

Optimizing Llrf Parameters In The Electron-Ion Collider, William M. Bjorndahl

Physics

To improve particle interaction in the future Electron-Ion Collider (EIC), we investigated different feedback implementations to control the accelerating voltage and examined the power and beam phase for each instance. Using MATLAB, we studied three feedback mechanisms: Direct, One Turn, and Feedforward. Enacting feedforward yielded the best performance. To minimize the klystron power consumption, we analyzed different Low-Level Radio Frequency (LLRF) parameters such as detuning. Combining theory and simulated results, we found the optimal detuning value that minimizes klystron power consumption.


An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons Jun 2019

An Investigation Of The Anomalous Thrust Capabilities Of The Electromagnetic Drive, Hannah J. Simons

Physics

The Electromagnetic Drive (EMDrive) is a propellant-less engine concept hypothesized by aero- space engineer Roger Shawyer. Shawyer’s proposed thruster technology is grounded on the theory of electromagnetic resonant behavior exhibited by a radiofrequency cavity, though the source of any generated thrust is undetermined by current physical laws. NASA Eagleworks Laboratories at John- son Space Center conducted a vacuum test campaign to investigate previously reported anomalous thrust capabilities of such a closed radiofrequency cavity, using a low-thrust torsion pendulum. The team published positive, although small-scaled thrust results in 2017. Following NASA Eagleworks breakthrough result and operating under the assumption that the …


Daily And Seasonal Variability Of Offshore Wind Power On The Central California Coast And Statewide Demand, Matthew Douglas Kehrli Apr 2019

Daily And Seasonal Variability Of Offshore Wind Power On The Central California Coast And Statewide Demand, Matthew Douglas Kehrli

Physics

No abstract provided.


Solar Powered Single-Axis Heliostat Active Solar Tracking Device, Mason Kyle Roberts Sep 2017

Solar Powered Single-Axis Heliostat Active Solar Tracking Device, Mason Kyle Roberts

Physics

As a means of cooking food, the burning of biomass accounts for over 4 million premature deaths in third world countries (“Household Air Pollution and Health”). The focus of this project was to explore an alternative that could utilize focused sunlight to cook food. A solar tracker was designed to be affixed to a parabolic, reflective, tilted single axis heliostat to follow the sun throughout the day and focus the reflected light to the bottom of a cooking surface. This surface became hot enough to for the preparation of food or boiling/sterilization of water.

A goal for each project was …


Spontaneous Parametric Down Conversion Of Photons Through Β-Barium Borate, Luke Horowitz May 2016

Spontaneous Parametric Down Conversion Of Photons Through Β-Barium Borate, Luke Horowitz

Physics

An apparatus for detecting pairs of entangled 405nm photons that have undergone Spontaneous Parametric Down Conversion through β-Barium Borate is described. By using avalanche photo-diodes to detect the low-intensity converted beam and a coincidence module to register coincident photons, it is possible to create an apparatus than can be used to perform quantum information experiments under a budget appropriate for an undergraduate physics lab.


High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray Dec 2014

High Speed Control Of Atom Transfer Sequence From Magneto-Optical To Dipole Trap For Quantum Computing, Jason Garvey Schray

Physics

Two circuits were designed, built, and tested for the purpose of aiding in the transfer of 87Rb atoms from a MOT to dipole traps and for characterizing the final dipole traps. The first circuit was a current switch designed to quickly turn the magnetic fields of the MOT off. The magnetic coil switch was able to reduce the magnetic field intensity to 5 % of its initial value after 81 μs. The second circuit was an analog signal switch designed to turn the modulation signal of an AOM off. The analog switch was able to reduce the modulation signal intensity …


Rubidium-Based Atomic Clock, Kate Miles Jun 2014

Rubidium-Based Atomic Clock, Kate Miles

Physics

In this paper we will explore the process of building an atomic clock from a function generator, go into an in-depth introductory discussion of the Datum LPRO, and examine how rubidium function generators work.


Laser Doppler Velocimetry: Flow Measurement Using A Digital Micromirror Device, Dawei Kuo Jun 2014

Laser Doppler Velocimetry: Flow Measurement Using A Digital Micromirror Device, Dawei Kuo

Physics

In this experiment we utilize a Texas Instruments Digital Micromirror Device to impart a phase shift to the beams of a laser Doppler velocimeter. The advantages of this approach include low cost, low power consumption, a precisely known phase-stepping frequency, and the capability of working with a broad range of optical wavelengths. The velocities measured with the set up shown here are of order 1 cm/s.


Design And Implementation Of Anti-Ballistic Missile System Using Video Motion Detection And A Nerf Gun, Steven Bowman Jun 2014

Design And Implementation Of Anti-Ballistic Missile System Using Video Motion Detection And A Nerf Gun, Steven Bowman

Physics

The goal of this senior project was to use a video camera and a dart gun to create an antiballistic missile dart launcher. I created a motion detecting and trajectory calculating program with a webcam and linked it to a Nerf dart gun to fire Nerf darts at airborne projectiles. Despite the creation of successful trajectory calculating and dart launching systems, my best efforts have resulted in an inconsistent anti-ballistic system where a very small number of projectiles are actually hit.


Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii Jun 2014

Ultrasonic Bonding For The Cuore Collaboration, John J. Sekerak Ii

Physics

This paper will give the reader a brief introduction to the Standard Model, Neutrinoless Double Beta Decay, and the CUORE experiment under construction at Gran Sasso National Lab in Assergi, Italy. The remainder of the paper will describe the bonding process used to connect the heater pads and NTDs to the copper housings of the tower structure. Extensive details of the troubleshooting and calibration period are presented as a way for the reader to better understand the concepts involved during the bonding stage of the assembly process.


A Boxer's Punch, Jacob A. Ekegren Apr 2014

A Boxer's Punch, Jacob A. Ekegren

Physics

For over a year now, I have been interested in the sport of boxing. This fascination led me to explore what occurs to a human head upon impact from a boxer’s punch. It is known that a knockout occurs when blood circulation to the brain is compressed. This compression results from the sudden acceleration and deceleration of the head. Therefore, the primary focus of this experiment explores the relative effort necessary to cause significant movement to a head about a neck.


Experimenting With Polymer Blend Solar Cells And Active Layer Thickness, Ryan Blumenthal May 2013

Experimenting With Polymer Blend Solar Cells And Active Layer Thickness, Ryan Blumenthal

Physics

Bulk heterojunction organic photovoltaics utilize the electrical characteristics of semi-conductive polymers. These solution processable materials are beneficial because of their low material cost, light weight, and simple fabrication requirements. Our devices employ multiple photoactive polymers, P3HT and PCPDTBT, to absorb photons over a wide spectral range. We optimized various device characteristics including thickness and thermal anneal usage to reach a power conversion efficiency of 3.0% in AM1.5 sunlight. Device performance degrades over time due to atmospheric water and oxygen, prompting us to investigate device packaging to extend cell lifetime for additional testing.


An Investigation Into Dual-Axis Solar Tracking, Daniel Spaizman Mar 2013

An Investigation Into Dual-Axis Solar Tracking, Daniel Spaizman

Physics

This senior project aims to determine a) if using a controlled photon-tracking system does produce greater voltage output than a fixed panel and b) by how much, if so. To do this, I built a dual-axis solar tracker using a small solar panel, some stepper motors, and an Arduino Uno. The majority of my time was spent familiarizing myself with the electrical components and fabricating the device. To test the performance of the panel, the leads of the solar panel were attached to the Arduino to record the output voltages. Two experiments were carried out to discover the answers to …


The Double Pendulum: Construction And Exploration, Benjamin J. Knudson Jul 2012

The Double Pendulum: Construction And Exploration, Benjamin J. Knudson

Physics

The exploration of a nonlinear mechanical system, the Double Pendulum, a physical pendulum on the end of a physical pendulum, using analytic and experimental approaches. Also included discussion of the design and construction of the Double Pendulum apparatus to work with Vernier LabPro and LoggerPro. The apparatus outputs live data of the angles to a LoggerPro which collects and produces time evolution graphs as well as a corresponding animation lending itself to comparison with theoretical models. Normal mode frequencies are found both analytically and experimentally for the the general (real) double pendulum. Examples of both simple (periodic) and complex (chaotic) …


Analysis Of Focal-Plane Measurements For Veritas Telescopes, William Hemmo Schuur Jun 2012

Analysis Of Focal-Plane Measurements For Veritas Telescopes, William Hemmo Schuur

Physics

In this experiment we measured the Point Spread Function (PSF) of the telescope at different image locations using a python GUI and servo motors to automate a screen along the focal axis of the telescope. Our results show that the telescope T4 has a well-defined image distance at each elevation, but this distance shifts as the telescope is lowered. Additionally, off-axis telescope orientations are degraded by aberrations and at low elevation possibly some structural warping of the mirror. The VERITAS Telescopes are located in Southern Arizona at the Fred Lawrence Whipple Observatory.


Ferrofluids, James Patt Jun 2011

Ferrofluids, James Patt

Physics

Ferrofluids are truly fascinating. Technologically savvy artists have been able to capture the human imagination with little but a judicious application of a magnetic field. The substance seems to defy gravity, flowing and shaping itself seemingly like magic (see Figure 1). The true magic, however, is the vast range of properties that this intrinsically simple substance can exhibit. It can vary its viscosity given the strength of the magnetic field. It can draw heat away from an over worked mechanical component. It can even split a beam of light in two. It’s hard to imagine what kind of strange and …


Construction And Enhancement Of Stereo Vacuum Tube Amplifier With Precision Machined Enclosure, Nikolaus (Nik) Glazar May 2010

Construction And Enhancement Of Stereo Vacuum Tube Amplifier With Precision Machined Enclosure, Nikolaus (Nik) Glazar

Physics

The purpose of this project was to build a high fidelity tube amplifier from a kit, and machine a beautiful enclosure to house the electronics. Improvements were made to the circuit, and the amplifier was then tested for audio performance.


Achieving Energy Efficiency In Buildings In Developing Countries, Pavel Ponomarev Jun 2006

Achieving Energy Efficiency In Buildings In Developing Countries, Pavel Ponomarev

Physics

No abstract provided.