Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Searching For The Common Suprathermal Power Law Tail In Parker Solar Probe's Isois Data, Asher S. Merrill Jan 2020

Searching For The Common Suprathermal Power Law Tail In Parker Solar Probe's Isois Data, Asher S. Merrill

Honors Theses and Capstones

Results from the Advanced Composition Explorer (ACE) and the Ulysses spacecraft suggested the existence of a pervasive power-law spectrum of suprathermal ions in the solar wind with a spectral index of -3/2. This distribution is of particular interest to humanity because the suprathermal ions it describes can serve as the seed population for large, destructive events that can harm ground- and air-based equipment. It has been suggested that various statistical mechanisms can produce the observed spectrum, however the underlying physical phenomena are not yet known. The spectrum of suprathermal ions is relatively unstudied closer to the Sun than 1 au. …


Decreasing Uncertainty In Nuclear Magnetic Resonance Measurements Through The Application Of Pappus Chains, Ryan Williams Jan 2020

Decreasing Uncertainty In Nuclear Magnetic Resonance Measurements Through The Application Of Pappus Chains, Ryan Williams

Honors Theses and Capstones

To make further advancements in nuclear polarization, the Dynamic Nuclear Polarization Group at the University of New Hampshire requires an accurate measurement of the polarization of their materials. Through a non-traditional method of data analysis, the uncertainty in this polarization measurement via Nuclear Magnetic Resonance (NMR) was reduced. To extract the polarization, we measure an NMR signal through the real impedance of our circuitry, whose area is proportional to the polarization. However, our signal size depends on how in-tune our circuitry is with a specific frequency, with the signal growing smaller the less in-tune it becomes. A new method of …


Landing Throttleable Hybrid Rockets With Hierarchical Reinforcement Learning In A Simulated Environment, Francesco Alessandro Stefano Mikulis-Borsoi Jan 2020

Landing Throttleable Hybrid Rockets With Hierarchical Reinforcement Learning In A Simulated Environment, Francesco Alessandro Stefano Mikulis-Borsoi

Honors Theses and Capstones

In this paper, I develop a hierarchical Markov Decision Process (MDP) structure for completing the task of vertical rocket landing. I start by covering the background of this problem, and formally defining its constraints. In order to reduce mistakes while formulating different MDPs, I define and develop the criteria for a standardized MDP definition format. I then decompose the problem into several sub-problems of vertical landing, namely velocity control and vertical stability control. By exploiting MDP coupling and symmetrical properties, I am able to significantly reduce the size of the state space compared to a unified MDP formulation. This paper …


Quantifying Electron Precipitation In The Van Allen Radiation Belts, Timothy Raeder Jan 2020

Quantifying Electron Precipitation In The Van Allen Radiation Belts, Timothy Raeder

Honors Theses and Capstones

The spatial and temporal distribution of high energy electron precipitation from the Van Allen radiation belts is not currently well-understood. The FIREBIRD-II mission (2015-present) and the Van Allen Probes (2012-2019) provide a unique opportunity to examine the behaviors and drivers of high energy electron precipitation. This study quantifies electron precipitation observed by FIREBIRD-II as a function of radial distance (L-shell), magnetic local time (MLT), hemisphere, and geomagnetic indices (Kp). Electron precipitation was observed to peak at L-shell 4.5-5. Regions of elevated electron precipitation were identified at L-shell 4-6 at dawn (MLT 6-9) and dusk (MLT 15-21). Hemisphere filtering indicated very …


An Exploration Of The Use Of The Fibonacci Sequence In Unrelated Mathematics Disciplines, Molly E. Boodey Jan 2020

An Exploration Of The Use Of The Fibonacci Sequence In Unrelated Mathematics Disciplines, Molly E. Boodey

Honors Theses and Capstones

No abstract provided.


Investigating The Time Scales Of Electromechanical Motion In Graphene Drumheads Using Pump-Probe Spectroscopy With Stm, Alana P. Gudinas Jan 2020

Investigating The Time Scales Of Electromechanical Motion In Graphene Drumheads Using Pump-Probe Spectroscopy With Stm, Alana P. Gudinas

Honors Theses and Capstones

Scanning tunneling microscopy (STM) has transformed the field of condensed matter physics over the past few decades, allowing scientists to image materials at the atmomic scale, manipulate individual atoms, and probe electronic states on the surface of materials. In recent years, there have been numerous developments to introduce time-resolved measurements to STM in order to probe atomic-scale dynamic processes and combine spatial and temporal resolution. Advances like THz-STM setups achieve femtosecond resolution, but require complex external setups. All-electronic pump-probe spectroscopy for STM (directly analogous to optical pump-probe spectroscopy) has been pioneered by Loth et al., and newer applications (Natterer et …