Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Differential Equations Models Of Pathogen-Induced Single- And Multi-Organ Tissue Damage, Fiona Lynch Jan 2017

Differential Equations Models Of Pathogen-Induced Single- And Multi-Organ Tissue Damage, Fiona Lynch

Honors Theses

The rise of antibiotic resistance has created a significant burden on healthcare systems around the world. Antibiotic resistance arises from the increased use of antibiotic drugs and antimicrobial agents, which kill susceptible bacterial strains, but have little effect on strains that have a mutation allowing them to survive antibiotic treatment, defined as “resistant” strains. With no non-resistant bacteria to compete for resources, the resistant bacteria thrives in this environment, continuing to reproduce and infect the host with an infection that does not respond to traditional antibiotic treatment.

A number of strategies have been proposed to tackle the problem of antibiotic …


Investigating Medicinally Important Portein-Protein And Protein-Ligand Interactions : A Computational Approach, Cooper Ashley Taylor Jan 2017

Investigating Medicinally Important Portein-Protein And Protein-Ligand Interactions : A Computational Approach, Cooper Ashley Taylor

Honors Theses

Molecular dynamics (MD) simulations and computational chemistry allow for an atomistic understanding of protein-protein and protein-ligand binding motifs. Through the use of MD, medicinally relevant complexes can be examined in detail unattainable by experimental methods. Within this work, systems pertinent to both Alzheimer’s Disease and HIV-1 are probed and thoroughly sampled to help elucidate potential therapeutic pathways. We used molecular dynamics and free energy estimations to gauge the affinity for the binary and ternary complexes of KLC1, APP and JIP1, three proteins all believed to be involved in the propagation of Alzheimer’s Disease. Two areas of thought exist suggesting that …


A New Almost Difference Set Construction, David Clayton Jan 2017

A New Almost Difference Set Construction, David Clayton

Honors Theses

This paper considers the appearance of almost difference sets in non-abelian groups. While numerous construction methods for these structures are known in abelian groups, little is known about ADSs in the case where the group elements do not commute. This paper presents a construction method for combining abelian difference sets into nonabelian almost difference sets, while also showing that at least one known almost difference set construction can be generalized to the nonabelian case.


Toward A Scientific Investigation Of Convolutional Neural Networks, Anh Tran Jan 2017

Toward A Scientific Investigation Of Convolutional Neural Networks, Anh Tran

Honors Theses

This thesis does not assume the reader is familiar with artificial neural networks. However, to keep the thesis concise, it assumes the reader is familiar with the standard Machine Learning concepts of training set, validation set, and test set [1]. Their usage is intended to help ensure that the Machine Learning system can generalize its training from input examples used during its training to “similar” kinds of examples never used during its training.

The concept of a Convolutional Neural Network (CNN) is one of the most successful computational concepts today for solving image classification problems. However, CNNs are difficult and …


Study Of The Neutron Detection Efficiency Of The Clas12 Detector, Keegan Sherman Jan 2017

Study Of The Neutron Detection Efficiency Of The Clas12 Detector, Keegan Sherman

Honors Theses

One of the central physics goals of Jefferson Lab is to understand how quarks and gluons form nuclei. The 12 GeV upgrade is nearing completion and a new detector, CLAS12, is being built in Hall B. One of the approved experiments will measure the magnetic form factor of the neutron (Gn ). To make this measurement, the ratio of electron-neutron (e-n) to electron-proton (e-p) scattering events will be extracted from deuterium in quasi-elastic kinematics. A major source of systematic uncertainty is the neutron detection efficiency (NDE) of CLAS12. To better understand the NDE I used the Monte Carlo …


Quantum Groups And Knot Invariants, Greg A. Hamilton Jan 2017

Quantum Groups And Knot Invariants, Greg A. Hamilton

Honors Theses

Knot theory arguably holds claim to the title of the mathematical discipline with the most unusually diverse applications. A knot can be defined topologically as an embedding of S1 in R3. Naturally, two knots are topologically equivalent if one cannot be smoothly deformed into the other. The question of whether two knots are equivalent is highly non-trivial, and so the question of knot invariants used to distinguish knots has occupied knot theorists for over a century. Knot theory has found application in statistical mechanics [1], symbolic logic and set theory [2], quantum fi theory [3], quantum computing [4], etc. …


Differential Privacy For Growing Databases, Gi Heung (Robin) Kim Jan 2017

Differential Privacy For Growing Databases, Gi Heung (Robin) Kim

Honors Theses

Differential privacy [DMNS06] is a strong definition of database privacy that provides indi- viduals in a database with the guarantee that any particular person’s information has very little effect on the output of any analysis of the overall database. In order for this type of analysis to be practical, it must simultaneously preserve privacy and utility, where utility refers to how well the analysis describes the contents of the database.

An analyst may additionally wish to evaluate how a database’s composition changes over time. Consider a company, for example, that accumulates data from a growing base of customers. This company …