Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Physical Sciences and Mathematics

Self-Quenching Of Carbon Monoxide In The Presence Of Noble Gases, Madeline V. Hinkle Jan 2024

Self-Quenching Of Carbon Monoxide In The Presence Of Noble Gases, Madeline V. Hinkle

Honors Theses

Precise rate coefficients for the vibrational relaxation pathways of CO(v)-CO in the presence of Ar and Kr have been determined through the work of this thesis. This work was motivated by the need to find a more cost-effective alternative to using xenon as a bath gas, which has increased significantly in price in the past few years. Similar experiments within this lab at Bucknell have been conducted in the past using argon, which can be used in the same manner as xenon but comes at a much lower price, but the experiments yielded inferior results compared to those using xenon. …


Stress-Sensing In Flexible Epoxy Adhesives, Christine Rukeyser Dec 2023

Stress-Sensing In Flexible Epoxy Adhesives, Christine Rukeyser

Honors Theses

In mechanochemistry, mechanical force causes a chemical change using small molecules, called mechanophores, by covalently connecting them into polymer materials. Stress-sensing mechanophores give a visual signal of mechanical force on the molecular level within a material. To our knowledge, stress-sensing mechanophores have never been incorporated into a commercially available epoxy kit. In this work, the characterization of two 3MTM Scotch-Weld TM Epoxy Adhesive kits: DP100 Plus Clear and DP190 Translucent have been completed through FT-IR Spectroscopy. The addition of the mechanophore spiropyran to the 3M kits will be discussed; as well as preparation and characterization of three dimerized anthracene derivatives. …


Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert May 2023

Photophysical And Photochemical Processes In Small Molecules And Materials For Solar Energy Conversion, Ethan Lambert

Honors Theses

The work covered in this thesis all falls under the theme of photophysical processes after light and matter interact. Those of primary interest are Raman scattering induced vibrations and excited state dynamics probed by transient absorption spectroscopy. Small molecules are studied with Raman spectroscopy and computational chemistry. These studies unearth the shifts in vibrational frequency as a function of charge transfer or receipt and how a quantitative assay of natural orbital populations and delocalization can offer both the nature and magnitude of this charge transfer. Further, a method is presented that builds upon previous work within the academic family tree; …


Structural Integrity And Stability Of Dna In Ionic Liquid And Near-Infrared Indolizine Squaraine Dye, Ember Yeji Suh May 2023

Structural Integrity And Stability Of Dna In Ionic Liquid And Near-Infrared Indolizine Squaraine Dye, Ember Yeji Suh

Honors Theses

Luminol, the most common presumptive test for blood at a crime scene, has multiple issues, such as false positive results with chemical agents, no luminescence due to “active oxygen” cleaning agents on bloodstains, and inability to penetrate textile materials. A combination of indolizine squaraine dye and ionic liquid (IL), or Dye Enhanced Textile Emission for Crime Tracking (DETECT), have shown potential to address these issues. The purpose of this study was to assess the binding mechanism of CG (1:1) and SO3SQ dye to HSA and how the mechanism can explain the W214 fluorescence quenching effect and to determine …


A Study Of Cannabigerolic Acid And Its Derivatives Via Raman Spectroscopy And Density Functional Theory, Trevor Wolfe May 2022

A Study Of Cannabigerolic Acid And Its Derivatives Via Raman Spectroscopy And Density Functional Theory, Trevor Wolfe

Honors Theses

The cannabinoids are a class of molecules endogenous to the cannabis plant. Their scientific relevance has increased in recent years due to the mercurial legal status of marijuana across the United States. Some of the most known are cannabidiol (CBD), δ9-tetrahydrocannabinol (δ9-THC), and δ8-THC due in large part to their widespread use, especially in states where marijuana and related products are legal. However, cannabigerolic acid (CBGA) is arguably the most important cannabinoid; it is enzymatically converted into other acidic cannabinoids, which subsequently undergo non-enzymatic processes (isomerization, thermal decarboxylation, oxidation, etc.) to synthesize further cannabinoids. Although there is a wealth of …


Lc-Ms Identification Of Serum Proteins Adsorbed Onto Ionic Liquid-Coated Nanoparticles, Anh M. Hoang May 2022

Lc-Ms Identification Of Serum Proteins Adsorbed Onto Ionic Liquid-Coated Nanoparticles, Anh M. Hoang

Honors Theses

Nanocarriers are promising candidates for drug delivery due to their size and tunable surface characteristics. However, when they are intravenously injected, few particles make it to their designated location. This is because upon entering the bloodstream, the serum in the blood, which is rich with a diversity of proteins, adsorbs onto the particles’ surfaces forming a protein corona. Many of the attached proteins trigger the mobile immune system and are removed by macrophages, and many particles are then filtered out by the liver and kidneys. Ionic Liquids (ILs), which consist of asymmetric, bulky components that are liquid


Computational Investigations Into Astrochemical Inorganic Oxides, Ammonia Borane, And Genetic Algorithms, E. Michael Valencia May 2022

Computational Investigations Into Astrochemical Inorganic Oxides, Ammonia Borane, And Genetic Algorithms, E. Michael Valencia

Honors Theses

The formulations of quantum mechanics in the early 1900s were exciting theoretical discoveries, but were not practical to apply until the advent of computers and the subsequent computational methods in 1951. With the introduction of tractable simplifications, procedures such as Hartree-Fock allowed for determination of properties of non-trivial systems. Presently, huge leads of computational power have allowed for extremely precise, quantitative work that can be applied to the human body, synthesis, or even astrochemical processes. This thesis presents works concerning 1) the history of quantum mechanics; 2) a brief primer on computational chemistry and its methods; 3) inorganic oxides in …


Computational And Spectroscopic Studies Of New Sulfur-Containing Dipole-Bound Anions, Nicholas Allen Kruse May 2022

Computational And Spectroscopic Studies Of New Sulfur-Containing Dipole-Bound Anions, Nicholas Allen Kruse

Honors Theses

Sulfur and Nitrogen are essential ingredients in both life-supporting and light-harvesting molecules. Their presence also usually leads to the delocalization of electrons and large dipole and quadrupole moments. Such molecules are sometimes able to form negative ions through the electrostatic binding of an excess electron. These so-called multipole-bound (dipole-bound, quadrupole-bound, etc.) anions have been shown to be important in radiation damage in biology and electron transport processes. Here, we present our recent computational and experimental results studying the creation of new multipole-bound anions.


Theoretical Studies Of Benzoquinone Reactivity In Acidic And Basic Environments, Natali Majoras May 2022

Theoretical Studies Of Benzoquinone Reactivity In Acidic And Basic Environments, Natali Majoras

Honors Theses

Quinones are a class of organic compounds containing a six-membered unsaturated ring with two carbonyl groups. They are biologically relevant mostly due to their ability to participate in redox reactions. Prior experiments in our lab showed that quinones can induce protein modifications that are pH dependent. In an acidic environment the modifications were less significant than in a basic environment. Previous computational studies have also been carried out to model, in neutral solutions, the reaction between various quinones and various amines. Various amine groups are used as a model for the amino group of lysine to represent protein modification. The …


Electron-Positron Annihilation Lifetime Spectroscopy Of Mgo And Aluminum-Doped Mgo, Elise Liebow Mar 2022

Electron-Positron Annihilation Lifetime Spectroscopy Of Mgo And Aluminum-Doped Mgo, Elise Liebow

Honors Theses

Radiation is a form of energy that can damage materials at an atomic level. This has implications for the mobility of radioactive waste through containment materials. We are characterizing atomic defects in materials by using Electron-Positron Annihilation Lifetime Spectroscopy (EPALS). When an electron and positron come into contact with each other, they annihilate and release two antiparallel 511-keV gamma rays. In a pristine crystalline sample, positrons can easily annihilate with electrons, but in a sample with vacancies/defects in the crystal structure, positrons take longer to annihilate. Therefore, the more vacancies in a sample, the longer the average lifetime of a …


Analyzing The Free Energy Of Ions Sampling A Voltage Gated Sodium Ion Channel, Isabel Varghese Jan 2022

Analyzing The Free Energy Of Ions Sampling A Voltage Gated Sodium Ion Channel, Isabel Varghese

Honors Theses

Voltage gated sodium ion channels are implicated in cardiac diseases, seizures, etc., and they play a role in maintaining ionic homeostasis in cells. Computational studies use prokaryotic model because they are simpler but function similarly to human voltage gated sodium ion channels. This study uses molecular dynamics (MD) to study three specific questions regarding voltage gated sodium ion channels of Magnetococcus marinus. The first question in this study is how the free energy of sodium diffusion compares to that of calcium ion diffusion. We were not able to find any physically significant information due to poor sampling and a lack …


A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang May 2021

A Theoretical Study Of Synchronous Proton Transfer In (Hf)N, (H2O) N, And (Hcl) N Where N = 3, 4, 5, Johnny Yang

Honors Theses

For (HF)n, (H2O)n, and (HCl)n (n = 3 − 5), we have rigorously characterized the structures for the minima and transition states for synchronous proton transfer (SPT) with the CCSD(T) method and aug-cc-pVTZ basis set. The electronic barrier heights (∆E) associated with these transition states have also been computed with the explicitly correlated CCSD(T)-F12 method and the aug-cc-pVQZ-F12 basis set (abbreviated aQZ-F12). (HCl)n (n = 3 − 5) SPT transition states have not been previously identified to the best of our knowledge, and they have been found …


Computational Investigation Of Stellar Cooling, Noble Gas Nucleation, And Organic Molecular Spectra, Jax Dallas May 2021

Computational Investigation Of Stellar Cooling, Noble Gas Nucleation, And Organic Molecular Spectra, Jax Dallas

Honors Theses

Since the advent and optimization of the Hartree-Fock method, quantum chemistry has been utilized to investigate systems operating on timeframes and environments traditionally unavailable to bench-top chemistry. As computational methods have grown more robust and less time consuming, quantum chemistry has been utilized to investigate a range of fields, including the steadily growing discipline of computational astrochemistry. Through the lens of computational astrochemistry, chemistry that occurred billions of years ago can be explored with equal clarity to that which is currently happening in the cosmos. The work presented throughout this thesis is a series of investigations into different timeframes of …


The Effect Of The Apolipoprotein A1 (Apoa1): The Stability And Folding In Potassium Chloride Environment, Alexandra Paladian May 2021

The Effect Of The Apolipoprotein A1 (Apoa1): The Stability And Folding In Potassium Chloride Environment, Alexandra Paladian

Honors Theses

Healthy levels of potassium chloride (KCl) can significantly affect the workings of the cholesterol level of the human body and how they pertain to an individual person. The search for a better salt additive for the human diet can provide a better option for people who experience high cholesterol levels and heart disease. The study focuses on the experimental design of the Molecular Dynamic (MD) simulation of the Apolipoprotein A1 (APOA1) in the potassium ion solution environment to determine the stability and folding of the protein. The study also compares its data to the previous experimental design of chloride ions …


Spectroscopic Analysis Of Potential Astromolecules Via Quantum Chemical Quartic Force Fields, Mason Gardner May 2021

Spectroscopic Analysis Of Potential Astromolecules Via Quantum Chemical Quartic Force Fields, Mason Gardner

Honors Theses

Astrochemistry has been substantially aided by computational techniques, particularly through the use of Quartic Force Field (QFF) analysis. Several methods have proven useful at correlating computed spectroscopic data with experimental observations. The F12-TZ QFF correlated well with experimental data for silicon oxide compounds, particularly those potentially involved in development from rocky bodies to planetary masses [27]. Compared to argon matrix experimental data, the vibrational frequencies for the molecules SiO2, SiO3, Si2O3, and Si2O4 become less accurate as the complexity of the molecules increases but should still be predictive of infrared characteristics of silicon oxides as they form clusters in space …


Understanding Shear Thinning Using Brownian Dynamics Simulation, Mackenzie Nicole Wall May 2021

Understanding Shear Thinning Using Brownian Dynamics Simulation, Mackenzie Nicole Wall

Honors Theses

In this work, we study the changes in structure during the shear thinning regime using Brownian Dynamics with a simple steady-state shear flow of binary charged colloidal suspension. Previous research has analyzed the viscosity, radial distribution, elasticity and plasticity of materials with rheo-SANS experimentation; however, less research has been conducted to replicate the experiment through computer simulations. With Brownian Dynamic Simulation, this study was able to reproduce the results obtained in a recent rheo-SANS experiment and it also explored the viscosity, radial distribution, elastic and plastic behavior of a system under different parameters. The comparison of simulated data with experimental …


Molecular Dynamic Simulation Of The Complex Folding Patterns Of Apolipoprotein A1 In Various Concentrations Of Potassium Chloride, Hannah Holmberg May 2021

Molecular Dynamic Simulation Of The Complex Folding Patterns Of Apolipoprotein A1 In Various Concentrations Of Potassium Chloride, Hannah Holmberg

Honors Theses

Apopliprotein or ApoA-1 is a complex lipoprotein that functions in the removal of cholesterol from the blood, removing cholesterol from the area around white blood cells and promoting the excretion of lipids through the lymphatic system. Previous research has found that ApoA-1 shows both folded and unfolded conformations depending on the concentration of NaCl in solution in the water around it. The protein was studied using molecular dynamics simulations. Once this state of equilibrium was reached, various structural properties of the protein were measured including the radius of gyration and the radial distribution function. The goal of the project was …


A Spectroscopic And Computational Study Of Diacetyl And Water Clusters, Margaret Baldwin Apr 2021

A Spectroscopic And Computational Study Of Diacetyl And Water Clusters, Margaret Baldwin

Honors Theses

Diacetyl, otherwise known as 1,2-butadione or biacetyl, is a flavor additive used in microwave popcorn, and more importantly as of late, e-cigarettes. The compound is known to cause lung disease for those who have been exposed to a large quantity of the buttery smelling molecule. As such, the characterization of diacetyl’s vibrational modes when it interacts with water are pivotal to understanding the effects it has on human lung tissue. In this research, the intermolecular interactions between water and diacetyl and the effects they have on one another’s vibrational modes are explored. While some experimental data is presented, the spectra …


Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador Mar 2021

Indolizine Donor-Based Dyes For Applications In Fluorescence Biological Imaging, William Meador

Honors Theses

NIR emissive fluorophores are intensely researched due to their potential to replace modern imaging procedures. Many molecular strategies have been employed in the literature to optimize fluorophores for deeper NIR absorption and emission, biocompatibility, and higher fluorescence quantum yields. Amongst the fluorophores studied to date, proaromatic indolizine donors are attractive alternatives to traditional alkyl amine and indoline based donors due to their 1) lower energy absorption and emission facilitated by proaromaticity, 2) large Stokes shifts due to increased dihedral angles about the π-system, 3) ease of functionalization and capacity for bioconjugation at the phenyl ring, and 4) potential for further …


The Quantitative Assessment Of Pond Scum: An Examination Of The Biogeochemistry Of Phosphorus Cycling In The Belgrade Lakes, Abbey M. Sykes Jan 2021

The Quantitative Assessment Of Pond Scum: An Examination Of The Biogeochemistry Of Phosphorus Cycling In The Belgrade Lakes, Abbey M. Sykes

Honors Theses

The internal recycling phosphorus in freshwater lake bottom sediments represents a significant source of hypolimnetic phosphorus (P) release for many of Maine’s lakes. In summer months, Maine lakes often thermally stratify and the lake hypolimnion develops anoxia, leading to a reduction in redox potential at the sediment-water interface. These reducing conditions facilitate the reductive dissolution of ferric iron, and, since phosphorus is often present in freshwater lake sediments as solid FeOOH-PO4 complexes, results in release of soluble phosphorus into the water column. Our current study presents field and laboratory data from sediment fractionation extractions designed to quantify concentrations of …


Development Of Catalytic Chromia-Based Aerogels, Fiona Fitzgerald Jun 2020

Development Of Catalytic Chromia-Based Aerogels, Fiona Fitzgerald

Honors Theses

Over one billion automobiles are in use around the world, the majority of which employ internal combustion engines. Catalytic converters are used to convert the toxic compounds found in car exhaust -- carbon monoxide, nitrogen oxides (NOx) and hydrocarbons -- to less harmful gases. The typical catalytic converter employs as catalysts expensive raw materials (platinum, palladium and/or rhodium) wash-coated onto an alumina-based ceramic substrate. Aerogel materials have high surface area and thermal stability, properties that make them attractive for catalysis applications. Aerogels made with transition metal oxides are candidates to replace platinum in the catalytic converter. Chromium oxide (chromia) materials …


Study Of Pharmaceutical Tablets Using Raman Mapping, Kyle Joseph Pauly May 2020

Study Of Pharmaceutical Tablets Using Raman Mapping, Kyle Joseph Pauly

Honors Theses

Covalent bonds are the strongest type of bonds holding molecules together. Based on the pattern of bonding of the molecule, the atoms associated with the bond will vibrate at a specific frequency. Utilizing vibrational spectroscopy, such as Raman spectroscopy, these unique vibrational frequencies can be used to detect the presence of analytes over a selected area. Furthermore, the intensities of the vibrational modes can be tracked to comparatively quantify the concentration of analytes at various locations. This is a method of great importance due to its ability to compare pharmaceutical tablets synthesized with different techniques. Here, the presence and concentration …


Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr. May 2020

Comparison Of The Vibrational Modes Of Thiolated Gold Nanoparticles Undergoing Core-Conversions Via Raman Spectroscopy, William Gregory Cannella Jr.

Honors Theses

In this project, the vibrational characteristics/vibrational modes are explored via Raman Spectroscopy for thiolated-gold nanoparticles. This class of compounds is also known as gold nanoparticles (AuNPs). They remain of great interest in research areas such as catalysis, gold dependent nanoelectronics, drug delivery, and sensing, due to their unique size-dependent optical, chiroptical, and electronic properties. Vibrational spectroscopy of thiolated gold nanoparticles are oftentimes considered nontrivial as the compounds strongly absorb light in the visible region of the electromagnetic spectrum, are generally considered weak scatterers, and give off large amounts of fluorescence. This combined with their black appearance, susceptibility to localized heating, …


Raman Spectroscopy Study Of Delta-9-Tetrahydrocannabinol And Cannabidiol And Their Hydrogen-Bonding Activities, Kalee Sigworth May 2020

Raman Spectroscopy Study Of Delta-9-Tetrahydrocannabinol And Cannabidiol And Their Hydrogen-Bonding Activities, Kalee Sigworth

Honors Theses

Cannabis and products containing its cannabinoids have grown rapidly in acceptance and use in recent years with legalization of cannabis in many countries and US states. Cannabidiol and Delta-9-Tetrahydrocannabinol are two primary cannabinoids in Cannabis that have been shown to produce analgesic effects along with many other positive side effects for the user. These two cannabinoids interact with receptors in the Central and Peripheral Nervous Systems. No spectroscopic study to our knowledge has been performed to analyze the hydrogen bonding effects of interactions between these two cannabinoids and solvents. Here, we employ theoretical Raman spectra through computational methods to study …


Raman Spectroscopic And Quantum Chemical Investigation Of The Effects Of Tri-Methylamine N-Oxide (Tmao) On Hydrated Urea, Hydrated Guanidinium, And Hydrogen Bonded Networks, Genevieve Verville May 2020

Raman Spectroscopic And Quantum Chemical Investigation Of The Effects Of Tri-Methylamine N-Oxide (Tmao) On Hydrated Urea, Hydrated Guanidinium, And Hydrogen Bonded Networks, Genevieve Verville

Honors Theses

Trimethylamine N-Oxide (TMAO), guanidinium, and urea are three important

osmolytes with their main significance to the biophysical field being in how they

uniquely interact with proteins. TMAO is known to stabilize and counteract the

destabilizing effects of both urea and guanidinium. The exact mechanisms by which

TMAO stabilizes and both guanidinium and urea destabilize folded proteins continue

to be debated in the literature. Some studies suggest that solvent interactions do not

play a large role in TMAO’s stabilizing effects and therefore advocate direct

stabilization, whereas others suggest that TMAO counteracts denaturation primarily

through an indirect effect of strong solvent interactions. …


Spectroscopic And Computational Studies Of The Agricultural Active Ingredient Dicamba, James Johnson Apr 2020

Spectroscopic And Computational Studies Of The Agricultural Active Ingredient Dicamba, James Johnson

Honors Theses

3,6-dichloro-2-methoxy benzoic acid, more commonly known as Dicamba, is the active ingredient in an array of pesticides used on farmlands across the globe. Dicamba’s mode of action works by mimicking the plant hormone auxin, which is synonymous to growth hormones in mammals. The mimicking of auxin results in excessive elongation and growing, which is eventually fatal for plants when the rate of growth can no longer be sustained. Dicamba has risen in prominence in recent years due to drift damage as a result of Dicamba’s high volatility. Having the ability to identify Dicamba is crucial for the agricultural industry. The …


Kinetic Study Of Conjugated Polymer Packing And Agglomeration, Skye R. Travis May 2017

Kinetic Study Of Conjugated Polymer Packing And Agglomeration, Skye R. Travis

Honors Theses

Although organic electronic materials are flexible, cheap to fabricate, and molecularly tunable, their performance has generally been less efficient than that of their inorganic counterparts. Chemical doping has been attempted as a method to increase the efficiency of organic materials. During this process, an organic material, typically a conjugated polymer, is exposed to an oxidant/reductant, called a dopant. Electron transfer between host polymer and dopant molecules increases the charge carrier density in the doped host material, making it a more efficient conductor. The effects of doping using 2,3,5,6-tetrafluoro-tetracyanoquinodimethane (F4TCNQ) on low molecular weight poly(3-hexylthiophene-2,5-diyl) (LMW P3HT) in varying ratios of …


Part I: Photochemical Generation Of Cyclohexyne From A Hydrocarbon Precursor Part Ii: A Triptycenyl Flower, Daniel Maurer Jan 2016

Part I: Photochemical Generation Of Cyclohexyne From A Hydrocarbon Precursor Part Ii: A Triptycenyl Flower, Daniel Maurer

Honors Theses

Part I

Photolysis of phenanthrene-based methylenecyclopropane derivatives have previously been shown to generate alkylidenecarbenes, which readily rearrange to form alkynes. In this work, we show that photolysis of an analogous cyclic alkylidenecarbene precursor at ambi- ent temperature forms cyclohexyne via the putative cyclopentylidenecarbene, and can be trapped by dienes via a Diels-Alder reaction. Cyclohexyne and other strained cycloalkynes are of much interest to theoreticians and experimentalists alike. Results of coupled-cluster and DFT calculations on the potential energy surface of cyclopentylidenecarbene and the corresponding strained cyclohexyne are also presented. The photochemical generation of cy- clopentylidenecarbene, and thus cyclohexyne, from a hydrocarbon …


Phenanthrene...With A Twist!, Nicholas S. Kim Jan 2016

Phenanthrene...With A Twist!, Nicholas S. Kim

Honors Theses

The twisted and sterically hindered 4,5-dibromophenanthrene, was synthesized from 2,6-dibromoiodobenzene in a four-step pathway, or from 1,3-dibromobenzene in a three-step pathway. Then, 4,5-dibromophenanthrene was subjected to a Kumada coupling, leading to the synthesis of an even more twisted 4-bromo-5-tert-butylphenanthrene. Computational studies using density functional theory were performed to compare experimental and theoretical characteristics of these compounds, such as dihedral angles, optimized structures, and transition state energy barriers.

The purpose of these experiments is to fill gaps in chemical databases, synthesize more pronounced twists in normally planar phenanthrene molecules, and to ultimately synthesize 4,5-bis-tert-butylphenanthrene, which may have …


Experimental And Computational Investigation Of Selected Β-Hydroxy Carbenes, Joseph D. Deangelo Jan 2015

Experimental And Computational Investigation Of Selected Β-Hydroxy Carbenes, Joseph D. Deangelo

Honors Theses

The photolytic precursor to the sterically hindered β-bis(tert)-butanol carbene, 3-(1a,9b-dihydro-1H-cyclopropa[l]phenanthren-1-yl)-2,2,4,4-tetramethylpentan-3-ol was prepared in three steps from phenanthrene. Photolysis of the precursor generates the desired β-hydroxy carbene, an intermediate, which subsequently rearranges into two different observed products from an intramolecular C-H insertion and alkyl shift. Four intramolecular mechanisms were ultimately considered to account for the possible rearrangement pathways. Computational studies using density functional theory are also presented.

In addition, the photolytic precursors to two cyclic β-hydroxy carbenes, 1-(1a,9b-dihydro-1H-cyclopropa[l]phenanthren-1-yl)cyclopropan-1-ol and 1-(1a,9b-dihydro-1H-cyclopropa[l]phenanthren-1-yl)cyclobutan-1-ol, were also prepared through different synthetic routes from phenanthrene. …