Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 36

Full-Text Articles in Physical Sciences and Mathematics

Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky Jul 2019

Hyper Wide Field Imaging Of The Local Group Dwarf Irregular Galaxy Ic 1613: An Extended Component Of Metal-Poor Stars, Ragadeepika Pucha, Jeffrey Carlin, Beth Willman, Jay Strader, David Sand, Keith Bechtol, Jean Brodie, Denija Crnojević, Duncan Forbes, Christopher Garling, Jonathan Hargis, Annika Peter, Aaron Romanowsky

Faculty Publications

Stellar halos offer fossil evidence for hierarchical structure formation. Since halo assembly is predicted to be scale-free, stellar halos around low-mass galaxies constrain properties such as star formation in the accreted subhalos and the formation of dwarf galaxies. However, few observational searches for stellar halos in dwarfs exist. Here we present gi photometry of resolved stars in isolated Local Group dwarf irregular galaxy IC 1613 (M sstarf ~ 108 M ⊙). These Subaru/Hyper Suprime-Cam observations are the widest and deepest of IC 1613 to date. We measure surface density profiles of young main-sequence, intermediate to old red giant branch, and …


Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume Jul 2019

Spatially Resolved Stellar Kinematics Of The Ultra-Diffuse Galaxy Dragonfly 44. I. Observations, Kinematics, And Cold Dark Matter Halo Fits, Pieter Van Dokkum, Asher Wasserman, Shany Danieli, Roberto Abraham, Jean Brodie, Charlie Conroy, Duncan Forbes, Christopher Martin, Matt Matuszewski, Aaron Romanowsky, Alexa Villaume

Faculty Publications

We present spatially resolved stellar kinematics of the well-studied ultra-diffuse galaxy (UDG) Dragonfly 44, as determined from 25.3 hr of observations with the Keck Cosmic Web Imager. The luminosity-weighted dispersion within the half-light radius is ${\sigma }_{1/2}={33}_{-3}^{+3}$ km s−1, lower than what we had inferred before from a DEIMOS spectrum in the Hα region. There is no evidence for rotation, with ${V}_{\max }/\langle \sigma \rangle \lt 0.12$ (90% confidence) along the major axis, in possible conflict with models where UDGs are the high-spin tail of the normal dwarf galaxy distribution. The spatially averaged line profile is more peaked than a …


Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie Jun 2019

Spatially Resolved Stellar Populations And Kinematics With Kcwi: Probing The Assembly History Of The Massive Early-Type Galaxy Ngc 1407, Anna Ferré-Mateu, Duncan Forbes, Richard Mcdermid, Aaron Romanowsky, Jean Brodie

Faculty Publications

Using the newly commissioned Keck Cosmic Web Imager (KCWI) instrument on the Keck II telescope, we analyze the stellar kinematics and stellar populations of the well-studied massive early-type galaxy (ETG) NGC 1407. We obtained high signal-to-noise integral field spectra for a central and an outer (around one effective radius toward the southeast direction) pointing with integration times of just 600 s and 2400 s, respectively. We confirm the presence of a kinematically distinct core also revealed by VLT/MUSE data of the central regions. While NGC 1407 was previously found to have stellar populations characteristic of massive ETGs (with radially constant …


Applications Of Information Theory In Solar And Space Physics, Jay R. Johnson, Simon Wing Feb 2019

Applications Of Information Theory In Solar And Space Physics, Jay R. Johnson, Simon Wing

Faculty Publications

Characterizing and modeling processes at the sun and space plasma in our solar system are difficult because the underlying physics is often complex, nonlinear, and not well understood. The drivers of a system are often nonlinearly correlated with one another, which makes it a challenge to understand the relative effects caused by each driver. However, entropy-based information theory can be a valuable tool that can be used to determine the information flow among various parameters, causalities, untangle the drivers, and provide observational constraints that can help guide the development of the theories and physics-based models. We review two examples of …


Fluctuating Hydrodynamics Of Reactive Liquid Mixtures, Changho Kim, Andy. Nonaka, John Bell, Alejandro Garcia, Aleksandar Donev Aug 2018

Fluctuating Hydrodynamics Of Reactive Liquid Mixtures, Changho Kim, Andy. Nonaka, John Bell, Alejandro Garcia, Aleksandar Donev

Faculty Publications

Fluctuating hydrodynamics (FHD) provides a framework for modeling microscopic fluctuations in a manner consistent with statistical mechanics and nonequilibrium thermodynamics. This paper presents an FHD formulation for isothermal reactive incompressible liquid mixtures with stochastic chemistry. Fluctuating multispecies mass diffusion is formulated using a Maxwell–Stefan description without assuming a dilute solution, and momentum dynamics is described by a stochastic Navier–Stokes equation for the fluid velocity. We consider a thermodynamically consistent generalization for the law of mass action for non-dilute mixtures and use it in the chemical master equation (CME) to model reactions as a Poisson process. The FHD approach provides remarkable …


2d Full-Wave Simulation Of Waves In Space And Tokamak Plasmas, Jay R. Johnson, Eun-Hwa Kim, Nicola Bertelli, Ernest Valeo, Joel Hosea Jan 2017

2d Full-Wave Simulation Of Waves In Space And Tokamak Plasmas, Jay R. Johnson, Eun-Hwa Kim, Nicola Bertelli, Ernest Valeo, Joel Hosea

Faculty Publications

Simulation results using a 2D full-wave code (FW2D) for space and NSTX fusion plasmas are presented. The FW2D code solves the cold plasma wave equations using the finite element method. The wave code has been successfully applied to describe low frequency waves in planetary magnetospheres (i.e., dipole geometry) and the results include generation and propagation of externally driven ultra-low frequency waves via mode conversion at Mercury and mode coupling, refraction and reflection of internally driven field-aligned propagating left-handed electromagnetic ion cyclotron (EMIC) waves at Earth. In this paper, global structure of linearly polarized EMIC waves is examined and the result …


Diffusive Transport Enhanced By Thermal Velocity Fluctuations, Alejandro Garcia, A. Donev, A. De La Fuente, J. B. Bell Jan 2011

Diffusive Transport Enhanced By Thermal Velocity Fluctuations, Alejandro Garcia, A. Donev, A. De La Fuente, J. B. Bell

Faculty Publications

We study the contribution of advection by thermal velocity fluctuations to the effective diffusion coefficient in a mixture of two identical fluids. We find good agreement between a simple fluctuating hydrodynamics theory and particle and finite-volume simulations. The enhancement of the diffusive transport depends on the system size L and grows as ln⁡(L/L0) in quasi-two-dimensional systems, while in three dimensions it scales as L0-1-L-1, where L0 is a reference length. Our results demonstrate that fluctuations play an important role in the hydrodynamics of small-scale systems.


A Hybrid Particle-Continuum Method For Hydrodynamics Of Complex Fluids, Alejandro Garcia, A. Donev, J. B. Bell, B. Alder Jan 2010

A Hybrid Particle-Continuum Method For Hydrodynamics Of Complex Fluids, Alejandro Garcia, A. Donev, J. B. Bell, B. Alder

Faculty Publications

A previously developed hybrid particle-continuum method [J. B. Bell, A. Garcia, and S. A. Williams, Multiscale Model. Simul., 6 (2008), pp. 1256–1280] is generalized to dense fluids and two- and three-dimensional flows. The scheme couples an explicit fluctuating compressible Navier–Stokes solver with the isotropic direct simulation Monte Carlo (DSMC) particle method [A. Donev, A. L. Garcia, and B. J. Alder, J. Stat. Mech. Theory Exp., 2009 (2009), article P11008]. To achieve bidirectional dynamic coupling between the particle (microscale) and continuum (macroscale) regions, the continuum solver provides state-based boundary conditions to the particle subdomain, while the particle solver provides flux-based boundary …


Computational Fluctuating Fluid Dynamics, Alejandro Garcia, J. B. Bell, S. Williams Jan 2010

Computational Fluctuating Fluid Dynamics, Alejandro Garcia, J. B. Bell, S. Williams

Faculty Publications

This paper describes the extension of a recently developed numerical solver for the Landau-Lifshitz Navier-Stokes (LLNS) equations to binary mixtures in three dimensions. The LLNS equations incorporate thermal fluctuations into macroscopic hydrodynamics by using white-noise fluxes. These stochastic PDEs are more complicated in three dimensions due to the tensorial form of the correlations for the stochastic fluxes and in mixtures due to couplings of energy and concentration fluxes (e.g., Soret effect). We present various numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate good agreement with theoretical results and molecular simulation


Stochastic Hard-Sphere Dynamics For Hydrodynamics Of Non-Ideal Fluids, Alejandro Garcia, A. Donev, B. J. Alder Jan 2008

Stochastic Hard-Sphere Dynamics For Hydrodynamics Of Non-Ideal Fluids, Alejandro Garcia, A. Donev, B. J. Alder

Faculty Publications

A novel stochastic fluid model is proposed with a nonideal structure factor consistent with compressibility, and adjustable transport coefficients. This stochastic hard sphere dynamics (SHSD) algorithm is a modification of the direct simulation Monte Carlo algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and a pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nanoparticle suspended in a compressible solvent.


Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, S. Williams, J. B. Bell Jan 2007

Algorithm Refinement For Fluctuating Hydrodynamics, Alejandro Garcia, S. Williams, J. B. Bell

Faculty Publications

This paper introduces an adaptive mesh and algorithm refinement method for fluctuating hydrodynamics. This particle-continuum hybrid simulates the dynamics of a compressible fluid with thermal fluctuations. The particle algorithm is direct simulation Monte Carlo (DSMC), a molecular-level scheme based on the Boltzmann equation. The continuum algorithm is based on the Landau–Lifshitz Navier–Stokes (LLNS) equations, which incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. It uses a recently developed solver for the LLNS equations based on third-order Runge–Kutta. We present numerical tests of systems in and out of equilibrium, including time-dependent systems, and demonstrate dynamic adaptive refinement by the …


Numerical Methods For The Stochastic Landau-Lifshitz Navier-Stokes Equations, Alejandro Garcia, J. B. Bell, S. Williams Jan 2007

Numerical Methods For The Stochastic Landau-Lifshitz Navier-Stokes Equations, Alejandro Garcia, J. B. Bell, S. Williams

Faculty Publications

The Landau-Lifshitz Navier-Stokes (LLNS) equations incorporate thermal fluctuations into macroscopic hydrodynamics by using stochastic fluxes. This paper examines explicit Eulerian discretizations of the full LLNS equations. Several computational fluid dynamics approaches are considered (including MacCormack’s two-step Lax-Wendroff scheme and the piecewise parabolic method) and are found to give good results for the variance of momentum fluctuations. However, neither of these schemes accurately reproduces the fluctuations in energy or density. We introduce a conservative centered scheme with a third-order Runge-Kutta temporal integrator that does accurately produce fluctuations in density, energy, and momentum. A variety of numerical tests, including the random walk …


Hydrodynamic Description Of The Adiabatic Piston, Alejandro Garcia, M. M. Mansour Jan 2006

Hydrodynamic Description Of The Adiabatic Piston, Alejandro Garcia, M. M. Mansour

Faculty Publications

A closed macroscopic equation for the motion of the two-dimensional adiabatic piston is derived from standard hydrodynamics. It predicts a damped oscillatory motion of the piston towards a final rest position, which depends on the initial state. In the limit of large piston mass, the solution of this equation is in quantitative agreement with the results obtained from both hard disk molecular dynamics and hydrodynamics. The explicit forms of the basic characteristics of the piston’s dynamics, such as the period of oscillations and the relaxation time, are derived. The limitations of the theory’s validity, in terms of the main system …


Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia Jan 2006

Estimating Hydrodynamic Quantities In The Presence Of Microscopic Fluctuations, Alejandro Garcia

Faculty Publications

This paper discusses the evaluation of hydrodynamic variables in the presence of spontaneous fluctuations, such as in molecular simulations of fluid flows. The principal point is that hydrodynamic variables such as fluid velocity and temperature must be defined in terms of mechanical variables such as momentum and energy density). Because these relations are nonlinear and because fluctuations of mechanical variables are correlated, care must be taken to avoid introducing a bias when evaluating means, variances, and correlations of hydrodynamic variables. The unbiased estimates are formulated; some alternative, incorrect approaches are presented as cautionary warnings. The expressions are verified by numerical …


Rectification Of Thermal Fluctuations In Ideal Gases, Alejandro Garcia, P. Meurs, C. Van De Broeck Jan 2004

Rectification Of Thermal Fluctuations In Ideal Gases, Alejandro Garcia, P. Meurs, C. Van De Broeck

Faculty Publications

We calculate the systematic average speed of the adiabatic piston and a thermal Brownian motor, introduced by C. Van den Broeck, R. Kawai and P. Meurs [Phys. Rev. Lett. 93, 090601 (2004)], by an expansion of the Boltzmann equation and compare with the exact numerical solution.


Inverted Velocity Profile In The Cylindrical Couette Flow Of A Rarefied Gas, Alejandro Garcia, K. Aoki, H. Yoshida, T. Nakanishi Jan 2003

Inverted Velocity Profile In The Cylindrical Couette Flow Of A Rarefied Gas, Alejandro Garcia, K. Aoki, H. Yoshida, T. Nakanishi

Faculty Publications

The cylindrical Couette flow of a rarefied gas is investigated, under the diffuse-specular reflection condition of Maxwell’s type on the cylinders, in the case where the inner cylinder is rotating whereas the outer cylinder is at rest. The inverted velocity profile for small accommodation coefficients, pointed out by Tibbs, Baras, and Garcia [Phys. Rev. E 56, 2282 (1997)] on the basis of a Monte Carlo simulation, is investigated extensively by means of a systematic asymptotic analysis for small Knudsen numbers as well as the direct numerical analysis of the Boltzmann equation, and the parameter range in which the phenomenon appears …


A Direct Simulation Monte Carlo Method For The Uehling-Uhlenbeck-Boltzmann Equation, Alejandro Garcia, W. Wagner Jan 2003

A Direct Simulation Monte Carlo Method For The Uehling-Uhlenbeck-Boltzmann Equation, Alejandro Garcia, W. Wagner

Faculty Publications

In this paper we describe a direct simulation Monte Carlo algorithm for the Uehling-Uhlenbeck-Boltzmann equation in terms of Markov processes. This provides a unifying framework for both the classical Boltzmann case as well as the Fermi-Dirac and Bose-Einstein cases. We establish the foundation of the algorithm by demonstrating its link to the kinetic equation. By numerical experiments we study its sensitivity to the number of simulation particles and to the discretization of the velocity space, when approximating the steady-state distribution.


Comment On ‘‘Stress-Density Ratio Slip-Corrected Reynolds Equation For Ultra-Thin Film Gas Bearing Lubrication’’, Alejandro Garcia Jan 2002

Comment On ‘‘Stress-Density Ratio Slip-Corrected Reynolds Equation For Ultra-Thin Film Gas Bearing Lubrication’’, Alejandro Garcia

Faculty Publications

No abstract provided.


Molecular Simulations Of Sound Wave Propagation In Simple Gases, Alejandro Garcia, N. Hadjiconstantinou Jan 2001

Molecular Simulations Of Sound Wave Propagation In Simple Gases, Alejandro Garcia, N. Hadjiconstantinou

Faculty Publications

Molecular simulations of sound waves propagating in a dilute hard sphere gas have been performed using the direct simulation Monte Carlo method. A wide range of frequencies is investigated, including very high frequencies for which the period is much shorter than the mean collision time. The simulation results are compared to experimental data and approximate solutions of the Boltzmann equation. It is shown that free molecular flow is important at distances smaller than one mean free path from the excitation point.


Erratum: "Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms", Alejandro Garcia, F. Alexander, B. Alder Jan 2000

Erratum: "Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms", Alejandro Garcia, F. Alexander, B. Alder

Faculty Publications

No abstract provided.


Time Step Truncation Error In Direct Simulation Monte Carlo, Alejandro Garcia, W. Wagner Jan 2000

Time Step Truncation Error In Direct Simulation Monte Carlo, Alejandro Garcia, W. Wagner

Faculty Publications

No abstract provided.


Burnett Description For Plane Poiseuille Flow, Alejandro Garcia, F. Uribe Jan 1999

Burnett Description For Plane Poiseuille Flow, Alejandro Garcia, F. Uribe

Faculty Publications

Two recent works have shown that at small Knudsen number ~K! the pressure and temperature profiles in plane Poiseuille flow exhibit a different qualitative behavior from the profiles obtained by the Navier-Stokes equations. Tij and Santos [J. Stat. Phys. 76, 1399 (1994)] used the Bhatnagar-Gross-Kook model to show that the temperature profile is bimodal and the pressure profile is nonconstant. Malek-Mansour, Baras, and Garcia [Physica A 240, 255 (1997)] qualitatively confirmed these predictions in computer experiments using the direct simulation Monte Carlo method (DSMC). In this paper we compare the DSMC measurements of hydrodynamic variables and non-equilibrium fluxes with numerical …


Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms, Alejandro Garcia, F. Alexander, B. Alder Jan 1998

Cell Size Dependence Of Transport Coefficients In Stochastic Particle Algorithms, Alejandro Garcia, F. Alexander, B. Alder

Faculty Publications

Using the Green–Kubo theory, the dependence of the viscosity and thermal conductivity on cell size is obtained explicitly for stochastic particle methods such as direct simulation Monte Carlo (DSMC) and its generalization, the consistent Boltzmann algorithm (CBA). These analytical results confirm empirical observations that significant errors occur when the cell dimensions are larger than a mean free path.


Anomalous Flow Profile Due To The Curvature Effect On Slip Length, Alejandro Garcia, K. Tibbs, F. Baras Jan 1997

Anomalous Flow Profile Due To The Curvature Effect On Slip Length, Alejandro Garcia, K. Tibbs, F. Baras

Faculty Publications

No abstract provided.


Three-Dimensional Direct Simulation Monte Carlo Method For Slider Air Bearings, Alejandro Garcia, W. Huang, D. B. Bogy Jan 1997

Three-Dimensional Direct Simulation Monte Carlo Method For Slider Air Bearings, Alejandro Garcia, W. Huang, D. B. Bogy

Faculty Publications

The direct simulation Monte Carlo (DSMC) method is used to solve the three-dimensional nano-scale gas film lubrication problem between a gas bearing slider and a rotating disk, and this solution is compared to the numerical solution of the compressible Reynolds equations with the slip flow correction based on the linearized Boltzmann equation as presented by Fukui and Kaneko [molecular gas film lubrication (MGL) method] [ASME J. Tribol. 110, 253 (1988)]. In the DSMC method, hundreds of thousands of simulated particles are used and their three velocity components and three spatial coordinates are calculated and recorded by using a hard-sphere collision …


A Simple Model For Nonequilibrium Fluctuations In A Fluid, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1996

A Simple Model For Nonequilibrium Fluctuations In A Fluid, Alejandro Garcia, F. Baras, M. Malek Mansour

Faculty Publications

Presents a train model that shows the long-range spatial correlations of fluctuations in nonequilibrium fluid systems. Illustration of model through analysis of flat-car trains running on parallel tracks; Simulation of train model in computers; Theoretical analysis for fluctuations in the train model; Relationship between train model and the fluctuating hydrodynamic theory of fluids.


Comment On 'Simulation Of A Two-Dimensional Rayleigh-Bénard System Using The Direct Simulation Monte Carlo Method, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1995

Comment On 'Simulation Of A Two-Dimensional Rayleigh-Bénard System Using The Direct Simulation Monte Carlo Method, Alejandro Garcia, F. Baras, M. Malek Mansour

Faculty Publications

No abstract provided.


A Consistent Boltzmann Algorithm, Alejandro Garcia, F. Alexander, B. Alder Jan 1995

A Consistent Boltzmann Algorithm, Alejandro Garcia, F. Alexander, B. Alder

Faculty Publications

The direct simulation Monte Carlo method for the Boltzmann equation is modified by an additional displacement in the advection process and an enhanced collision rate in order to obtain the exact hard sphere equation of state at all densities. This leads to consistent thermodynamic and transport properties in the low density (Boltzmann) regime. At higher densities transport properties are comparable to the predictions of the Enskog model. The algorithm is faster than molecular dynamics at low and moderate densities and readily run on a parallel architecture


Direct Simulation Monte Carlo For Thin Film Bearings, Alejandro Garcia, B. Alder, F. J. Alexander Jan 1994

Direct Simulation Monte Carlo For Thin Film Bearings, Alejandro Garcia, B. Alder, F. J. Alexander

Faculty Publications

The direct simulation Monte Carlo (DSMC) scheme is used to study the gas flow under a read/write head positioned nanometers above a moving disk drive platter (the slider bearing problem). In most cases, impressive agreement is found between the particle-based simulation and numerical solutions of the continuum hydrodynamic Reynolds equation which has been corrected for slip. However, at very high platter speeds the gas is far from equilibrium, and the load capacity for the slider bearing cannot be accurately computed from the hydrodynamic pressure.


Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour Jan 1994

Microscopic Simulation Of Dilute Gases With Adjustable Transport Coefficients, Alejandro Garcia, F. Baras, M. Malek Mansour

Faculty Publications

The Bird algorithm is a computationally efficient method for simulating dilute gas flows. However, due to the relatively large transport coefficients at low densities, high Rayleigh or Reynolds numbers are difficult to achieve by this technique. We present a modified version of the Bird algorithm in which the relaxation processes are enhanced and the transport coefficients reduced, while preserving the correct equilibrium and nonequilibrium fluid properties. The present algorithm is found to be two to three orders of magnitude faster than molecular dynamics for simulating complex hydrodynamical flows.