Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender Dec 2013

A Viscous Flow Analog To Prandtl’S Optimized Lifting Line Theory Utilizing Rotating Biquadratic Bodies Of Revolution, Mark Nathaniel Callender

Doctoral Dissertations

Prandtl’s lifting line theory expanded the Kutta-Joukowski theorem to calculate the lift and induced drag of finite wings. The circulation distribution about a real wing was represented by a superposition of infinitesimal vortex filaments. From this theory, the optimum distribution of circulation was determined to be elliptical. A consequence of this theory led to the prediction that the elliptical chord distribution on a real fixed wing would provide the elliptical circulation distribution. The author applied the same line of reasoning to lift-producing rotating cylinders in order to determine the cylindrical geometry that would theoretically produce an elliptical circulation distribution. The …


Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey Oct 2013

Modeling And Control Of Nanoparticle Bloodstream Concentration For Cancer Therapies, Scarlett S. Bracey

Doctoral Dissertations

Currently, the most commonly used treatments for cancerous tumors (chemotherapy, radiation, etc.) have almost no method of monitoring the administration of the treatment for adverse effects in real time. Without any real time feedback or control, treatment becomes a "guess and check" method with no way of predicting the effects of the drugs based on the actual bioavailability to the patient's body. One particular drug may be effective for one patient, yet provide no benefit to another. Doctors and scientists do not routinely attempt to quantifiably explain this discrepancy. In this work, mathematical modeling and analysis techniques are joined together …


Optimal Control For Management In Gypsy Moth Models, Marco Vinisio Martinez Aug 2013

Optimal Control For Management In Gypsy Moth Models, Marco Vinisio Martinez

Doctoral Dissertations

The gypsy moth, Lymantria dispar (L.), is an invasive species and the most destructive forest defoliator in North America. Gypsy moth outbreaks are spatially synchronized over areas across hundreds of kilometers. Outbreaks can result in loss of timber and other forestry products. Greater losses tend to occur to the ecosystem services that forests provide, such as wildlife habitat, carbon sequestration, and nutrient cycling. The United States can be divided in three different areas: a generally infested area (populations established), an uninfested area (populations not established), and a transition zone between the two. There are different management programs matching these different …


A Mathematical Model And Numerical Method For Thermoelectric Dna Sequencing, Liwei Shi Jul 2013

A Mathematical Model And Numerical Method For Thermoelectric Dna Sequencing, Liwei Shi

Doctoral Dissertations

DNA sequencing is the process of determining the precise order of nucleotide bases, adenine, guanine, cytosine, and thymine within a DNA molecule. It includes any method or technology that is used to determine the order of the four bases in a strand of DNA. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and discovery. Thermoelectric DNA sequencing is a novel method to sequence DNA by measuring the heat that is released when DNA polymerase inserts a deoxyribonucleoside triphosphate into a growing DNA strand. The thermoelectric device for this project is composed of four parts: …


Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii Jul 2013

Generalized Finite-Difference Time-Domain Schemes For Solving Nonlinear Schrödinger Equations, Frederick Ira Moxley Iii

Doctoral Dissertations

The nonlinear Schrödinger equation (NLSE) is one of the most widely applicable equations in physical science, and characterizes nonlinear dispersive waves, optics, water waves, and the dynamics of molecules. The NLSE satisfies many mathematical conservation laws. Moreover, due to the nonlinearity, the NLSE often requires a numerical solution, which also satisfies the conservation laws. Some of the more popular numerical methods for solving the NLSE include the finite difference, finite element, and spectral methods such as the pseudospectral, split-step with Fourier transform, and integrating factor coupled with a Fourier transform. With regard to the finite difference and finite element methods, …