Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 54

Full-Text Articles in Physical Sciences and Mathematics

Probabilistic Short Term Solar Driver Forecasting With Neural Network Ensembles, Joshua Daniell Jan 2023

Probabilistic Short Term Solar Driver Forecasting With Neural Network Ensembles, Joshua Daniell

Graduate Theses, Dissertations, and Problem Reports

Commonly utilized space weather indices and proxies drive predictive models for thermosphere density, directly impacting objects in low-Earth orbit (LEO) by influencing atmospheric drag forces. A set of solar proxies and indices (drivers), F10.7, S10.7, M10.7, and Y10.7, are created from a mixture of ground based radio observations and satellite instrument data. These solar drivers represent heating in various levels of the thermosphere and are used as inputs by the JB2008 empirical thermosphere density model. The United States Air Force (USAF) operational High Accuracy Satellite Drag Model (HASDM) relies on JB2008, and …


Applications Of Digital Filters In Radio Astronomy, Joseph William Kania Jan 2023

Applications Of Digital Filters In Radio Astronomy, Joseph William Kania

Graduate Theses, Dissertations, and Problem Reports

The radio sky spans tens of orders of magnitude in length, density, and time.
In this thesis, using novel filtering techniques and two different telescopes,
we investigate two tracers of cosmic structure: Baryon Acoustic Oscillations
(BAOs) and Fast Radio Bursts (FRBs). BAOs formed as the universe cooled
after the Big Bang. BAOs provide a fiducial length scale of the universe
throughout cosmic time and thus can be used to understand how the universe
is evolving. FRBs are very bright, short timescale, bursts of as-yet unknown
origin which occur uniformly on the sky at a rate of a few thousand per …


Forecasting And Optimizing Sensitivity To Low-Frequency Gravitational Waves, Andrew Ryan Kaiser Jan 2023

Forecasting And Optimizing Sensitivity To Low-Frequency Gravitational Waves, Andrew Ryan Kaiser

Graduate Theses, Dissertations, and Problem Reports

Pulsars are among the most exotic objects in our Universe. These rapidly
spinning, high magnetic field neutron stars can be used for a wide range of
scientific studies: from the makeup of their own extremely dense and poorly
understood interior to using their extremely regular signals to detect gravita-
tional waves (GWs). Pulsar timing continues to expand to broader communi-
ties, with larger and more sensitive radio telescopes planned and partnerships
between pulsar timing arrays (PTAs) that span the entire globe. A realm of
new physics with the detection of a background hum of gravitational waves
from black holes merging …


Pathfinding Fast Radio Bursts Localizations Using Very Long Baseline Interferometry, Pranav Rohit Sanghavi Jan 2022

Pathfinding Fast Radio Bursts Localizations Using Very Long Baseline Interferometry, Pranav Rohit Sanghavi

Graduate Theses, Dissertations, and Problem Reports

Fast radio bursts (FRBs) are millisecond-duration, bright radio transients of extragalactic origin. The Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope’s CHIME/FRB instrument and other radio telescopes across the globe have detected hundreds of FRBs. Their origins are a mystery. Precise localization within the host is critical to distinguish between progenitor models. This can be achieved through Very Long Baseline Interferometry (VLBI). Until now, VLBI localizations have only been carried out in targeted follow-up observations of some repeating sources which comprise a small fraction of the FRBs.

For this work, an interferometric array of 6m dishes was constructed at the Green …


Polarization Properties Of Millisecond Pulsars: Astrophysical Interpretations And Applications, Haley Megan Wahl Jan 2022

Polarization Properties Of Millisecond Pulsars: Astrophysical Interpretations And Applications, Haley Megan Wahl

Graduate Theses, Dissertations, and Problem Reports

Pulsars are some of the most extreme objects in the universe; their small yet incredibly predictable spin periods coupled with their strong magnetic fields make them ideal laboratories for study. Not only are they interesting objects themselves, but they can also help us probe different astrophysical environments, such as the interstellar magnetic field and the solar corona.

These stars are highly polarized, and that polarization comes into play in various fields of pulsar physics (such as constraining models of pulsar emission), but obtaining that polarization information can be difficult, as the polarization properties of the light can change as the …


Studies Of Electromagnetic Counterparts To Gravitational-Wave Sources And The Nonlinear Gravitational-Wave Memory Effect, Ashok Choudhary Jan 2022

Studies Of Electromagnetic Counterparts To Gravitational-Wave Sources And The Nonlinear Gravitational-Wave Memory Effect, Ashok Choudhary

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, theoretical/computational results are presented from the investigations of three different topics within the general research areas of gravitational wave astrophysics and electromagnetic counterparts. First, general relativistic force-free electromagnetic theory and its application to black hole magnetospheres are discussed. In this connection, simulations of a binary black hole merger are examined using the open-source software, GiRaFFE, which is used to model black holes’ magnetospheres and to study supermassive black-hole binary mergers in an external magnetic field. In the simulations, a helical magnetic field structure around each black hole is observed. Electromagnetic energy flux is observed during the inspiral …


Bayesian Methods For Multi-Messenger Analysis Of Supermassive Black Hole Binaries: Pulsars And Quasars And Gravitational Waves, Oh My!, Caitlin A. Witt Jan 2022

Bayesian Methods For Multi-Messenger Analysis Of Supermassive Black Hole Binaries: Pulsars And Quasars And Gravitational Waves, Oh My!, Caitlin A. Witt

Graduate Theses, Dissertations, and Problem Reports

Supermassive black hole binaries (SMBHBs) can lurk, often unseen, in the centers of post-merger galaxies, and pulsar timing arrays (PTAs) are rapidly approaching the sensitivities required to detect nanohertz gravitational waves (GWs) from these giant pairs. Independently, numerous electromagnetic surveys are seeking evidence of these dynamic duos’ effects on their host galaxies by searching for periodicities in time-domain observations. Combining these two methods to use multi-messenger techniques allows us to learn more about these binaries than using one messenger alone. In this thesis, we have created Bayesian methods to search for SMBHBs using electromagnetic observations of quasars and through GW …


New Techniques In Celestial Mechanics, Ali Abdulrasool Abdulhussein Jan 2022

New Techniques In Celestial Mechanics, Ali Abdulrasool Abdulhussein

Graduate Theses, Dissertations, and Problem Reports

It is shown that for the classical system of the N body problem ( Newtonian Motion), if the motion of the N particles starts from a planar initial motion at t=t_{0}, then the motion of the N particles continues to be planar for every t\in[t_{0},t_{1}], assuming that no collisions occur between the N particles. Same argument is shown about the linear motion, namely, for the classical system of the N body problem, if the motion of the N particles starts from a linear initial motion at t=t_{0}, then the motion of the N particles continues to be linear for every …


Deep Radio Observations And The Role Of The Cosmic Web In Galaxy Evolution, Nicholas M. Luber Jan 2022

Deep Radio Observations And The Role Of The Cosmic Web In Galaxy Evolution, Nicholas M. Luber

Graduate Theses, Dissertations, and Problem Reports

A current open question in the evolution of galaxies, is what are the physical mechanisms that cut off galaxies from their primordial gas reservoirs, resulting in the end of their star-formation capabilities? Recent observational programs have shown that the properties of galaxies show dependencies on their placement within the large-scale structure (LSS) of the universe. These observations have motivated recent developments in theoretical work that have shown how a galaxy's interaction with the LSS may impact its connection to primordial gas supply, and ability to continue to accrete gas, the fundamental ingredient in star-formation.

In order to investigate the role …


Impact Of Radio Frequency Interference And Real-Time Spectral Kurtosis Mitigation, Evan T. Smith Jan 2022

Impact Of Radio Frequency Interference And Real-Time Spectral Kurtosis Mitigation, Evan T. Smith

Graduate Theses, Dissertations, and Problem Reports

We catalog the ubiquity of Radio Frequency Interference (RFI) plaguing every modern radio telescope and investigate several ways to mitigate it in order to create better science-ready data products for astronomers. There are a myriad of possible RFI sources, including satellite uplinks and downlinks, cellular communications, air traffic radar, and natural sources such as lightning. Real-time RFI mitigation strategies must take these RFI characteristics into account, as the interfering signals can look significantly different at very high time and frequency resolutions.

We examine Spectral Kurtosis (SK) as a real-time statistical RFI detection method, and compare its flagging efficacy against simulated …


Deep Learning Detection In The Visible And Radio Spectrums, Greg Clancy Murray Jan 2022

Deep Learning Detection In The Visible And Radio Spectrums, Greg Clancy Murray

Graduate Theses, Dissertations, and Problem Reports

Deep learning models with convolutional neural networks are being used to solve some of the most difficult problems in computing today. Complicating factors to the use and development of deep learning models include lack of availability of large volumes of data, lack of problem specific samples, and the lack variations in the specific samples available. The costs to collect this data and to compute the models for the task of detection remains a inhibitory condition for all but the most well funded organizations. This thesis seeks to approach deep learning from a cost reduction and hybrid perspective — incorporating techniques …


Inferential Statistics And Information Theoretical Measures: An Approach To Interference Detection In Radio Astronomy, Morgan R. Dameron Jan 2022

Inferential Statistics And Information Theoretical Measures: An Approach To Interference Detection In Radio Astronomy, Morgan R. Dameron

Graduate Theses, Dissertations, and Problem Reports

In a time when technology is rapidly growing, radio observatories are now able to expand their computational power to achieve higher receiver sensitivity power and a more flexible realtime computing approach to probe the universe for its composition and study new astronomical phenomena. This allows searches to go deeper into the universe, and results in the recording of massive quantities of observed data. At the same time, this increases the amount of radio frequency interference (RFI) found in the obtained observatory data. The high power of RFI easily masks the low power of extraterrestrial signals, making them hard to detect …


Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi Jan 2021

Magnetic Properties Of Lsmo/Sto Thin Films: Magnetocaloric, Spin Dynamics And Magnetic Viscosity Investigations, Navid Mottaghi

Graduate Theses, Dissertations, and Problem Reports

While other films are discussed, this dissertation will focus on detailed studies of the dc and ac bulk magnetometry in a characteristic 7.6 nm thin film of La0.7Sr0.3MnO3 grown on SrTiO3 (001). The dc bulk magnetometry measurements show that the sample is magnetically inhomogeneous. Temperature variation of magnetization (M vs. T) was measured in zero-field-cooled and field-cooled protocols to determine the blocking temperature TB in different applied magnetic fields. The field variation of TB is interpreted as the presence of embedded spin clusters of 1.4 nm. Moreover, the M vs. …


Searching Harder, Localizing Better, Classifying Faster: Optimizing Fast Radio Burst Detection And Analysis, Kshitij Aggarwal Jan 2021

Searching Harder, Localizing Better, Classifying Faster: Optimizing Fast Radio Burst Detection And Analysis, Kshitij Aggarwal

Graduate Theses, Dissertations, and Problem Reports

Fast Radio Bursts (or FRBs) are millisecond-duration transients of extragalactic origin. They exhibit dispersion caused by propagation through an ionized medium, and quantified by Dispersion Measure (DM). Around 800 FRBs (24 repeaters) have been discovered; so far, 24 FRBs have been confidently associated with a host galaxy. In this thesis, we discuss multiple new FRB search and analysis techniques and the corresponding tools that enable us to search for FRBs harder, localize them better, and classify candidates faster.

We discuss five open-source software suites that can be used in FRB analysis. These suites are used to distinguish between FRBs and …


Using Numerical Relativity To Explore Strong Gravity And Develop Force-Free Electrodynamics Simulation Software With Best-Practice Development, Patrick E. Nelson Jan 2021

Using Numerical Relativity To Explore Strong Gravity And Develop Force-Free Electrodynamics Simulation Software With Best-Practice Development, Patrick E. Nelson

Graduate Theses, Dissertations, and Problem Reports

In this dissertation, we explore the effects of extremely strong gravitational and electro- dynamic fields using the techniques of numerical relativity. We use the existing black hole simulation software in the Einstein Toolkit to compute the spin-up of two initially nonspin- ning black holes as they pass by each other in space. The angular momentum is imparted by the tidal interaction between the two black holes, in a parallel to Earth’s tides, as described by classical mechanics, which also transfer angular momentum between the Earth’s rotation and the Moon’s orbit. The largest observed dimensionless spin observed was 0.20 with an …


Pulsar Noise Processes And Emission Physics, Brent Jacob Shapiro-Albert Jan 2021

Pulsar Noise Processes And Emission Physics, Brent Jacob Shapiro-Albert

Graduate Theses, Dissertations, and Problem Reports

Precision pulsar timing can be used to study many different astrophysically interesting phenomena, from the emission mechanism of pulsars to the detection of nanohertz gravitational waves. These analyses span topics such as studying the single pulses of pulsars and analyzing years of pulsar timing data from pulsar timing arrays (PTAs). Single-pulse studies allow us to glean information on the emission physics of pulsars on their shortest timescales, while PTA observations of millisecond pulsars (MSPs) allow us to not only study the pulsars themselves, but also probe the interstellar medium (ISM) and constrain the noise in the data for precision pulsar …


Transform Based Approaches For The Detection Of Astrophysical Signals, Marwan Mahfud Alkhweldi Jan 2021

Transform Based Approaches For The Detection Of Astrophysical Signals, Marwan Mahfud Alkhweldi

Graduate Theses, Dissertations, and Problem Reports

Development of new algorithms for the detection of isolated astrophysical pulses is of interest to radio astronomers. Both Fast Radio Bursts (FRBs) and several Rotating Radio Transients (RRATs) were detected through the application of a single pulse search algorithm. The conventional approach to detect astronomical pulses requires an exhaustive search for the correct dispersion measure. Its accelerated versions involve signal processing in Fourier transform space.

In this dissertation, we present several new transform-based approaches for the detection and analysis of astrophysical signals with the latest being the most effective and advanced of all. It is implemented in several steps. First, …


Identification And Classification Of Radio Pulsar Signals Using Machine Learning, Di Pang Jan 2021

Identification And Classification Of Radio Pulsar Signals Using Machine Learning, Di Pang

Graduate Theses, Dissertations, and Problem Reports

Automated single-pulse search approaches are necessary as ever-increasing amount of observed data makes the manual inspection impractical. Detecting radio pulsars using single-pulse searches, however, is a challenging problem for machine learning because pul- sar signals often vary significantly in brightness, width, and shape and are only detected in a small fraction of observed data.

The research work presented in this dissertation is focused on development of ma- chine learning algorithms and approaches for single-pulse searches in the time domain. Specifically, (1) We developed a two-stage single-pulse search approach, named Single- Pulse Event Group IDentification (SPEGID), which automatically identifies and clas- …


Development Of Eccentric Black Hole Binary Searches In The Ligo And Pta Regimes, Belinda D. Cheeseboro Jan 2021

Development Of Eccentric Black Hole Binary Searches In The Ligo And Pta Regimes, Belinda D. Cheeseboro

Graduate Theses, Dissertations, and Problem Reports

In the past several years, a plethora of gravitational wave events have been detected leading to better understanding of binary black holes, binary neutron stars, and neutron star black hole binaries. All of these transient detections have helped us better understand the dynamics of these systems as well as the populations of these objects, but each of these sources was detected with models that neglected eccentricity. Eccentricity is one of several potential markers for determining the formation of binary systems. Detecting gravitational waves from eccentric sources can better our understanding of such systems and help constrain theories about their formation. …


Searches For Fast Radio Bursts Using Machine Learning, Devansh Agarwal Jan 2020

Searches For Fast Radio Bursts Using Machine Learning, Devansh Agarwal

Graduate Theses, Dissertations, and Problem Reports

Fast Radio bursts (FRBs) are enigmatic astrophysical events with millisecond durations and flux densities in the range 0.1-100 Jy, with the prototype source discovered by Lorimer et al. (2007). Like pulsars, FRBs show the characteristic inverse square sweep in observing frequency due to propagation through an ionized medium. This effect is quantified by the dispersion measure (DM). Unlike pulsars, FRBs have anomalously high DMs, which are consistent with an extragalactic origin. Over 100 FRBs have been published at the time of writing, and 13 have been conclusively identified with host galaxies with spectroscopically determined redshifts in the range 0.003 ≤ …


Searching For Needles In The Cosmic Haystack, Thomas Ryan Devine Jan 2020

Searching For Needles In The Cosmic Haystack, Thomas Ryan Devine

Graduate Theses, Dissertations, and Problem Reports

Searching for pulsar signals in radio astronomy data sets is a difficult task. The data sets are extremely large, approaching the petabyte scale, and are growing larger as instruments become more advanced. Big Data brings with it big challenges. Processing the data to identify candidate pulsar signals is computationally expensive and must utilize parallelism to be scalable. Labeling benchmarks for supervised classification is costly. To compound the problem, pulsar signals are very rare, e.g., only 0.05% of the instances in one data set represent pulsars. Furthermore, there are many different approaches to candidate classification with no consensus on a best …


Modeling The Galactic Compact Binary Neutron Star Population And Studying The Double Pulsar System, Nihan Pol Jan 2020

Modeling The Galactic Compact Binary Neutron Star Population And Studying The Double Pulsar System, Nihan Pol

Graduate Theses, Dissertations, and Problem Reports

Binary neutron star (BNS) systems consisting of at least one neutron star provide an avenue for testing a broad range of physical phenomena ranging from tests of General Relativity to probing magnetospheric physics to understanding the behavior of matter in the densest environments in the Universe. Ultra-compact BNS systems with orbital periods less than few tens of minutes emit gravitational waves with frequencies ~mHz and are detectable by the planned space-based Laser Interferometer Space Antenna (LISA), while merging BNS systems produce a chirping gravitational wave signal that can be detected by the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO). Thus, BNS …


Application Of Wavelet Analysis On Transient Rlectivity In Ultra-Thin Films, S. Yousefi Saraf, R. Trappen, S. Kumari, G. Bhandari, N. Mottaghi, C. Y. Huang, G. B. Cabrera, A. D. Bristow, M. B. Holcomb Jan 2019

Application Of Wavelet Analysis On Transient Rlectivity In Ultra-Thin Films, S. Yousefi Saraf, R. Trappen, S. Kumari, G. Bhandari, N. Mottaghi, C. Y. Huang, G. B. Cabrera, A. D. Bristow, M. B. Holcomb

Faculty & Staff Scholarship

Applications of wavelet analysis in ultra-thin film transient reflectivity (TR) measurements have been investigated. Advantages of utilizing different localized wavelet bases, in position and time, have been addressed on the residual TR signals. Morse wavelets have been used to obtain information from the abrupt oscillatory modes in the signal, which are not distinguishable with conventional methods such as Fourier transforms. These abrupt oscillatory modes are caused by the surface, interface, or any short-lived oscillatory modes which are suppressed in the TR signal in ultra-thin films. It is demonstrated that by choosing different Morse wavelets, information regarding different oscillatory modes in …


Automated Polarization-Dependent Multidimensional Coherent Spectroscopy Phased Using Transient Absorption, J. K. Wahlstrand, G. M. Wernsing, J. Paul, A. D. Bristow Jan 2019

Automated Polarization-Dependent Multidimensional Coherent Spectroscopy Phased Using Transient Absorption, J. K. Wahlstrand, G. M. Wernsing, J. Paul, A. D. Bristow

Faculty & Staff Scholarship

: An experimental apparatus is described for multidimensional optical spectroscopy with fully automated polarization control, based on liquid crystal variable retarders. Polarization dependence of rephasing two-dimensional coherent spectra are measured in a single scan, with absolute phasing performed for all polarization configurations through a single automated auxiliary measurement at the beginning of the scan. A factor of three improvement in acquisition time is demonstrated, compared to the apparatus without automated polarization control. Results are presented for a GaAs quantum well sample and an InGaAs quantum well embedded in a microcavity


Multidimensional Item Response Theory And The Force And Motion Conceptual Evaluation, Jie Yang, Cabot Zabriskie, John Stewart Jan 2019

Multidimensional Item Response Theory And The Force And Motion Conceptual Evaluation, Jie Yang, Cabot Zabriskie, John Stewart

Faculty & Staff Scholarship

Many studies have examined the structure and properties of the Force Concept Inventory (FCI); however, far less research has investigated the Force and Motion Conceptual Evaluation (FMCE). This study applied Multidimensional Item Response Theory (MIRT) to a sample of N ¼ 4528 FMCE post-test responses. Exploratory factor analysis showed that 5, 9, and 10-factor models optimized some fit statistics. The FMCE uses extensive blocking of items into groups with a common stem; these blocks factored together in most models. A confirmatory analysis, which constrained the MIRT models to a theoretical model constructed from expert solutions, produced a model requiring only …


Exploring The Structure Of Misconceptions In The Force Concept Inventory With Modified Module Analysis, James Wells, Rachel Henderson, John Stewart, Gay Stewart, Jie Yang, Adrienne Traxler Jan 2019

Exploring The Structure Of Misconceptions In The Force Concept Inventory With Modified Module Analysis, James Wells, Rachel Henderson, John Stewart, Gay Stewart, Jie Yang, Adrienne Traxler

Faculty & Staff Scholarship

Module analysis for multiple-choice responses (MAMCR) was applied to a large sample of Force Concept Inventory (FCI) pretest and post-test responses (Npre ¼ 4509 and Npost ¼ 4716) to replicate the results of the original MAMCR study and to understand the origins of the gender differences reported in a previous study of this dataset. When the results of MAMCR could not be replicated, a modification of the method was introduced, modified module analysis (MMA). MMA was productive in understanding the structure of the incorrect answers in the FCI, identifying 9 groups of incorrect answers on the pretest and 11 groups …


Partitioning The Gender Gap In Physics Conceptual Inventories: Force Concept Inventory, Force And Motion Conceptual Evaluation, And Conceptual Survey Of Electricity And Magnetism, Rachel Henderson, John Stewart, Adrienne Traxler Jan 2019

Partitioning The Gender Gap In Physics Conceptual Inventories: Force Concept Inventory, Force And Motion Conceptual Evaluation, And Conceptual Survey Of Electricity And Magnetism, Rachel Henderson, John Stewart, Adrienne Traxler

Faculty & Staff Scholarship

Over the last decade, the “gender gap” in physics conceptual inventory scores has been extensively studied by the physics education research community. Researchers have identified many factors that influence the overall differences in post-test scores between men and women. More recently, it has been shown that the Force Concept Inventory (FCI) contains eight items that are substantially unfair; six are unfair to women, two are unfair to men. The Force and Motion Conceptual Evaluation (FMCE) and the Conceptual Survey of Electricity and Magnetism (CSEM), however, contain fewer unfair items. In this work, results from prior studies are used to further …


Interface Engineered Room‐Temperature Ferromagnetic Insulating State In Ultrathin Manganite Films, Weiwei Li, Bonan Zhu, Qian He, Albina Y. Borisevich, Chao Yun, Rui Wu, Ping Lu, Zhimin Qi, Qiang Wang, Aiping Chen, Haiyan Wang, Stuart A. Cavill, Kelvin H.L. Zhang, Judith L. Macmanus-Driscoll Jan 2019

Interface Engineered Room‐Temperature Ferromagnetic Insulating State In Ultrathin Manganite Films, Weiwei Li, Bonan Zhu, Qian He, Albina Y. Borisevich, Chao Yun, Rui Wu, Ping Lu, Zhimin Qi, Qiang Wang, Aiping Chen, Haiyan Wang, Stuart A. Cavill, Kelvin H.L. Zhang, Judith L. Macmanus-Driscoll

Faculty & Staff Scholarship

emperatures near room temperature are critically needed for use in dissipationless quantum computation and spintronic devices. However, such materials are extremely rare. Here, a room‐temperature FMI is achieved in ultrathin La0.9Ba0.1MnO3 films grown on SrTiO3 substrates via an interface proximity effect. Detailed scanning transmission electron microscopy images clearly demonstrate that MnO6 octahedral rotations in La0.9Ba0.1MnO3 close to the interface are strongly suppressed. As determined from in situ X‐ray photoemission spectroscopy, O K‐edge X‐ray absorption spectroscopy, and density functional theory, the realization of the FMI state arises from a reduction of Mn eg bandwidth caused by the quenched MnO6 octahedral …


Gwtc-1: A Gravitational-Wave Transient Catalog Of Compact Binary Mergers Observed By Ligo And Virgo During The First And Second Observing Runs, B. P. Abbott Jan 2019

Gwtc-1: A Gravitational-Wave Transient Catalog Of Compact Binary Mergers Observed By Ligo And Virgo During The First And Second Observing Runs, B. P. Abbott

Faculty & Staff Scholarship

We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1 M⊙ during the first and second observing runs of the advanced gravitationalwave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, …


Reply To: “On The Understanding Of Current-Induced Spin Polarization Of Three-Dimensional Topological Insulators”, C. H. Li, O. M. J. Van ‘T Erve, S. Rajput, L. Li, B. T. Jonker Jan 2019

Reply To: “On The Understanding Of Current-Induced Spin Polarization Of Three-Dimensional Topological Insulators”, C. H. Li, O. M. J. Van ‘T Erve, S. Rajput, L. Li, B. T. Jonker

Faculty & Staff Scholarship

No abstract provided.