Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl May 2023

Fabrication, Measurements, And Modeling Of Semiconductor Radiation Detectors For Imaging And Detector Response Functions, Corey David Ahl

Doctoral Dissertations

In the first part of this dissertation, we cover the development of a diamond semiconductor alpha-tagging sensor for associated particle imaging to solve challenges with currently employed scintillators. The alpha-tagging sensor is a double-sided strip detector made from polycrystalline CVD diamond. The performance goals of the alpha-tagging sensor are 700-picosecond timing resolution and 0.5 mm spatial resolution. A literature review summarizes the methodology, goals, and challenges in associated particle imaging. The history and current state of alpha-tagging sensors, followed by the properties of diamond semiconductors are discussed to close the literature review. The materials and methods used to calibrate the …


Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper May 2023

Total Absorption Spectroscopy Of Mo-106 And Tc-106, Michael Cooper

Doctoral Dissertations

Total absorption spectroscopy is a method of gamma-ray spectroscopy that has gained prominence in the past several decades, as nuclear data revisions are performed on older nuclear data, which is often incomplete. A strong understanding of underlying nuclear data, particularly fission and beta decay data, is essential for nuclear reactors and nuclear fuel decay heat. This PhD work involves the analysis of fission fragments 106Mo [Mo-106] and 106Tc [Tc-106]. These neutron rich isotopes contribute upwards of 6% of the cumulative fission yield of 241Pu [Pu-241] fission, and 4% of 239Pu [Pu-239] fission. Prior data for these two fission fragments only …


Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms Aug 2022

Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms

Doctoral Dissertations

Complex chalcogenides provide an important platform to explore the interplay between structure, charge, and spin across pressure-induced phase transitions. Where much of the previous research has been focused on tuning these materials towards the single-layer limit, we instead explore the modification of bond lengths and bond angles under compression. In the first project we revealed piezochromism in MnPS3. We combined high pressure optical spectroscopy and first-principles calculations to analyze the dramatic color change (green → yellow → red → black) that takes place as the charge gap shifts across the visible and into the near infrared region, moving …


Symmetry Progression And Possible Polar Metallicity In Nips3 Under Pressure, Nathan Harms, Takahiro Matsuoka, Subhasis Sanmanta, Amanda J. Clune, Kevin A. Smith, Amanda V. Haglund, Erxi Feng, Huibo Cao, Jesse S. Smith, David Mandrus, Heung-Sik Kim, Zhenxian Liu, Janice L. Musfeldt Jun 2022

Symmetry Progression And Possible Polar Metallicity In Nips3 Under Pressure, Nathan Harms, Takahiro Matsuoka, Subhasis Sanmanta, Amanda J. Clune, Kevin A. Smith, Amanda V. Haglund, Erxi Feng, Huibo Cao, Jesse S. Smith, David Mandrus, Heung-Sik Kim, Zhenxian Liu, Janice L. Musfeldt

Chemistry Publications and Other Works

van der Waals solids are ideal platforms for the discovery of new states of matter and emergent properties under external stimuli. Under pressure, complex chalcogenides like MPS3 (M = Mn, Ni, Co, V) host sliding and structural transitions, insulator-to-metal transitions, the possibility of an orbitally-selective Mott state, piezochromism, and superconductivity. In this work, we bring together diamond anvil cell techniques, infrared and Raman scattering spectroscopies, and X-ray diffraction with a detailed symmetry analysis and first-principles calculations to uncover a series of high-pressure phases in NiPS3. Remarkably, we find five different states of matter between ambient …


The Exploration Of Small Molecules, Lanthanide Complexes, And Catalysis Using Electronic Structure Theory, Dynamics, And Machine Learning, Gavin Mccarver May 2022

The Exploration Of Small Molecules, Lanthanide Complexes, And Catalysis Using Electronic Structure Theory, Dynamics, And Machine Learning, Gavin Mccarver

Doctoral Dissertations

With the ever increasing availability of computational resources, more challenging chemical systems can be studied. Among these challenges are the rotational and vibrational spectra of diatomic molecules within spectroscopic accuracy, the environmental perturbations induced on a rotating water molecule, the prediction of free binding energies of lanthanide complexes using machine learning, and the study of catalytic mechanisms through a theoretical framework. High levels of electronic structure theory were combined with a rigorous treatment of either the anharmonic vibrational wave functions to study diatomic molecules or the rotational wave functions to study H2O-pH2 interactions. The former was initially …


Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht May 2022

Enigma - Ongoing Development Towards Novel Beta-Decay Spectroscopy Station At Isolde, Philipp Wagenknecht

Masters Theses

Beta decay and collinear laser spectroscopy are proven efficient tools to study nuclear structure far from stability. Two areas of significance are investigations into nuclear deformation and shape coexistence, as well as delayed neutron emissions used in nuclear energy applications. This contribution presents the ongoing development towards a novel beta-decay spectroscopy station for the VITO experiment at CERN’s radioactive ion beam facility ISOLDE. The setup will utilize both collinear laser spectroscopy and beta-decay spectroscopy to measure the energy and spin-parities of the ground and excited states of radioactive beams. Initial designs of the support structure, magnetic field, and detector array …


Spectroscopic Properties Of Ferroic Superlattices, Shiyu Fan May 2021

Spectroscopic Properties Of Ferroic Superlattices, Shiyu Fan

Doctoral Dissertations

The interplay between charge, structure, magnetism, and orbitals leads to rich physics and exotic cross-coupling in multifunctional materials. Superlattices provide a superb platform to study the complex interactions between different degrees of freedom. In this dissertation, I present a spectroscopic investigation of natural and engineered superlattices including FexTaS2 and (LuFeO3)m/(LuFe2O4)1 under external stimuli of temperature and magnetic field as well as chemical substitution. Studying the phase transitions, symmetry-breaking, and complex interface interactions from a microscopic viewpoint enhances fundamental understanding of coupling mechanism between different order parameters and the …


Utilization Of Raman Spectroscopic Techniques For Forensic Science Applications, Alyssa Rose Daniel Dec 2020

Utilization Of Raman Spectroscopic Techniques For Forensic Science Applications, Alyssa Rose Daniel

Masters Theses

In the field of forensic science, it is important to have reliable, accurate, and nondestructive testing methods for evidence collection and testing. Current methods, such as gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC), are destructive to evidence and require lengthy sample preparation. Because of its nondestructive nature, specificity, and portability, Raman spectroscopy has been increasingly improving forensic science. The goal of this work is to expand on the growing pool of knowledge of forensics related Raman applications.

One problem that has plagued forensic scientists for years is how to accurately identify the time since death, or post-mortem interval. …


Surface Modification Of Icy Satellites: Space Weathering Of The Large Moons Of Uranus And Alluvial Fan Formation On Saturn’S Moon Titan, Richard John Cartwright Aug 2017

Surface Modification Of Icy Satellites: Space Weathering Of The Large Moons Of Uranus And Alluvial Fan Formation On Saturn’S Moon Titan, Richard John Cartwright

Doctoral Dissertations

The surfaces of icy satellites are continually modified by space weathering and geologic processes. This dissertation explores the processes changing the surface compositions of the large moons of Uranus and mechanisms for development of possible alluvial fans on the Saturnian moon, Titan. On the Uranian satellites, I hypothesize that the origin and distribution of carbon dioxide ice results from charged particle bombardment, and that spectrally red material originated on retrograde irregular satellites. On Titan, I hypothesize that landforms identified as alluvial fans at low and mid latitudes were formed by sheetfloods, whereas possible alluvial fans at high latitudes were formed …


Utilizing Nanostructures And Nano-Mechanics For Sensitive Analyte Detection Via Surface Enhanced Raman Spectroscopy (Sers) And Micro-Cantilever Sensing Platforms, Ryan Andrew Wallace May 2017

Utilizing Nanostructures And Nano-Mechanics For Sensitive Analyte Detection Via Surface Enhanced Raman Spectroscopy (Sers) And Micro-Cantilever Sensing Platforms, Ryan Andrew Wallace

Doctoral Dissertations

The purpose of this dissertation is to present the effective utilization of nano-structures and nano-mechanics in conjunction with surface enhanced Raman spectroscopy (SERS) and micro-cantilever (MC) mechanical sensors for sensitive analytical detection. One of the most important attributes an Analytical Chemist can possess is the ability to develop and efficiently use the tools provided to obtain precise and accurate information that can be effectively communicated. The following is a brief outline of the background concepts and studies that will be present herein.

A discussion of SERS will be presented in which the history and concepts behind the technique will be …


Mining Uranium From Seawater: A Coordination Chemistry Approach, Nada Mehio May 2016

Mining Uranium From Seawater: A Coordination Chemistry Approach, Nada Mehio

Doctoral Dissertations

Poly(acrylamidoxime) fibers are the current state-of-the-art adsorbent for mining uranium from seawater. However, the amidoxime group is not perfectly selective towards the uranyl cation, in particular, competition with transition metal cations remains a major challenge. In order for subsequent generations of chelating polymer adsorbents to be improved, the coordination chemistry of amidoxime-uranyl and -transition metal cation complexes needs to be better understood. While the coordination mode of amidoxime-uranyl complexes has been established in the literature, a number of amidoxime-transition metal cation complex binding motifs can be observed on the Cambridge Structrural Database. Likewise, the formation constants, or log K values, …


Development Of Novel Analytical Methods With The Aim Of Forensic Analyte Detection Using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, And Magneto-Elastic Wire Sensing, Nichole Ann Crane May 2016

Development Of Novel Analytical Methods With The Aim Of Forensic Analyte Detection Using Ultra-Thin Layer Chromatography, Surface Enhanced Raman Spectroscopy, And Magneto-Elastic Wire Sensing, Nichole Ann Crane

Doctoral Dissertations

The purpose of this dissertation is to develop analytical methods that aid in the detection of forensic analytes. Forensic analytes require methods with increased sensitivity and low limit of detection capabilities. Improvements in separation techniques, surface enhanced Raman spectroscopic techniques, and wire-less gas sensing can each assist in the detection of trace evidence.

When surface enhanced Raman is coupled with thin-layer chromatography a mixture of compounds can be separated and transferred to a metal substrate to be detected using Raman spectroscopy. Surface enhanced Raman scattering enhances the Raman signal intensity by placing a metal substrate in close proximity to an …


Strontium Monoxide Measurements In Methane-Air Flames, Bobby J. Wimberly Dec 2015

Strontium Monoxide Measurements In Methane-Air Flames, Bobby J. Wimberly

Masters Theses

The spectroscopy of alkaline earth metal compounds has been an area of active research for several decades. This is at least in part stimulated by the application of these compounds to practical areas ranging from technology to medicine. The use of these compounds in the field of pyrotechnics was the motivation for a series of flame emission spectroscopy (FES) experiments with strontium containing compounds. Specifically, strontium monoxide (SrO) is studied as a candidate radiator for the diagnostic of methane-air flames.

SrO emissions have been observed in flames with temperatures in the range of 1200-1600-K for two compounds: strontium hydroxide and …


Laser-Induced Breakdown Spectroscopy For Analysis Of High Density Methane-Oxygen Mixtures, Matthew Dackman Dec 2014

Laser-Induced Breakdown Spectroscopy For Analysis Of High Density Methane-Oxygen Mixtures, Matthew Dackman

Masters Theses

The applicability of laser-induced breakdown spectroscopy (LIBS) toward greater than atmospheric density combustion diagnostics is examined. Specifically, this involves ascertaining the feasibility of measuring chemical equivalence ratios directly from atomic emission spectra at high density. The need for such measurement arises from the desire to quantify real time, localized combustion performance in weakly mixed flows. Insufficiently mixed flows generally result in unwanted byproducts, possess the propensity for overall combustion instability, and are increasingly likely to experience localized flame extinction.

We simulate methane/oxygen combustion in ambient pressures ranging 1 to 4 atmospheres, demonstrating these results to be analogous to what would …


Development Of Optical Sensors For Chemical Detection, Jonathan Kelly Fong May 2014

Development Of Optical Sensors For Chemical Detection, Jonathan Kelly Fong

Doctoral Dissertations

Detection of biodiesel at low and high concentrations in diesel is highly desired in the aviation and fuel industries. Cross contamination of jet fuel with biodiesel may impact the thermal stability and freezing point which can cause deposits in the fuel system or cause the fuel to gel, leading to jet engine operability problems and possible engine flameout. A dye doped optical sensor utilizing the dye Nile Blue Chloride has been developed for quick and direct detection of biodiesel which mainly contains fatty acid methyl esters (FAME). The sensing mechanism relies on the solvatochromatic properties of the dye which undergoes …


Characterizing Phyllosilicate Distribution, Abundance, And Origin On Mars, Christina Elizabeth Viviano May 2012

Characterizing Phyllosilicate Distribution, Abundance, And Origin On Mars, Christina Elizabeth Viviano

Doctoral Dissertations

Secondary phyllosilicates are hydrated minerals formed in the presence of liquid water. On Earth, their formation is often indicative of a neutral, water-rich environment, capable of supporting and preserving organic matter. Different phyllosilicate species may be produced in different pH levels and water-to-rock ratios. The identification of mineralogically diverse phyllosilicates in small, localized exposures on Mars provides a complex record of their formation processes. While discrete outcrops of phyllosilicates have been previously identified in high-resolution visible/near-infrared images of Mars, regional coverage of these phyllosilicate-rich areas at better resolution is limited. Furthermore, spectra of minerals in this wavelength range do not …


A Six-Dimensional H2–H2 Potential Energy Surface For Bound State Spectroscopy, Robert Hinde Jan 2008

A Six-Dimensional H2–H2 Potential Energy Surface For Bound State Spectroscopy, Robert Hinde

Chemistry Publications and Other Works

We present a six-dimensional potential energy surface for the (H2)2 dimer based on coupled-cluster electronic structure calculations employing large atom-centered Gaussian basis sets and a small set of midbond functions at the dimer’s center of mass. The surface is intended to describe accurately the bound and quasibound states of the dimers (H2)2, (D2)2, and H2–D2 that correlate with H2 or D2 monomers in the rovibrational levels (v, j) =(0,0), (0,2), (1,0), and (1,2). We employ a close-coupled approach to compute the …


Infrared-Active Vibron Bands Associated With Substitutional Impurities In Solid Parahydrogen, Robert Hinde Jan 2003

Infrared-Active Vibron Bands Associated With Substitutional Impurities In Solid Parahydrogen, Robert Hinde

Chemistry Publications and Other Works

We present a model for the line shapes of infrared-active Q1(0) vibron bands observed in solid parahydrogen doped with low concentrations of spherical substitutional impurities. The line shapes are highly sensitive to the H2 vibrational dependence of the dopant–H2 interaction. When this vibrational dependence is strong, the dopant can trap the infrared-active vibron in its first solvation shell; in this case, the trapped vibron manifests itself in the absorption spectrum as a narrow feature to the red of the pure solid’s vibron band.