Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li Dec 2020

Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li

Mathematical Sciences Faculty Research

© 2020 The Author(s) In this paper, we investigate a system of governing equations for modeling wave propagation in graphene. Compared to our previous work (Yang et al., 2020), here we re-investigate the governing equations by eliminating two auxiliary unknowns from the original model. A totally new stability for the model is established for the first time. Since the finite element scheme proposed in Yang et al. (2020) is only first order in time, here we propose two new schemes with second order convergence in time for the simplified modeling equations. Discrete stabilities inheriting exactly the same form as the …


Design Aspects, Energy Consumption Evaluation, And Offset For Drinking Water Treatment Operation, Saria Bukhary, Jacimaria Batista, Sajjad Ahmad Jun 2020

Design Aspects, Energy Consumption Evaluation, And Offset For Drinking Water Treatment Operation, Saria Bukhary, Jacimaria Batista, Sajjad Ahmad

Civil and Environmental Engineering and Construction Faculty Research

Drinking water treatment, wastewater treatment, and water distribution are energy-intensive processes. The goal of this study was to design the unit processes of an existing drinking water treatment plant (DWTP), evaluate the associated energy consumption, and then offset it using solar photovoltaics (PVs) to reduce carbon emissions. The selected DWTP, situated in the southwestern United States, utilizes coagulation, flocculation, sedimentation, filtration, and chlorination to treat 3.94 m3 of local river water per second. Based on the energy consumption determined for each unit process (validated using the plant’s data) and the plant’s available landholding, the DWTP was sized for solar PV …


Assessing The Potential For Greater Solar Development In West Texas, Usa, Dale D. Devitt, M. H. Young, J. P. Pierre May 2020

Assessing The Potential For Greater Solar Development In West Texas, Usa, Dale D. Devitt, M. H. Young, J. P. Pierre

Life Sciences Faculty Research

As population and economies continue to grow on a global scale, so too does the demand for energy. To improve reliability and independence of energy supplies, the U.S. and many other countries are seeking internally-sourced renewable energy; solar is one such renewable-energy source that meets these criteria. However, all energy sources exert some environmental impacts. In the case of solar, direct impacts stem mostly from alteration of land needed to host infrastructure. Understanding the environmental upside and downside potential of solar energy systems allows a more comprehensive, side-by-side comparison with different energy sources. In this article, we focus on the …


College Of Engineering Senior Design Competition Spring 2020, University Of Nevada, Las Vegas May 2020

College Of Engineering Senior Design Competition Spring 2020, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge. The senior design competition helps focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects on …


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen Jan 2020

Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen

Physics & Astronomy Faculty Research

We report on mechanical properties of blue phosphorus nanotubes (BluePNTs) from systematic molecular dynamics simulations, adopting a Stillinger-Weber potential with parameters determined by fitting to energetic and structural data from first-principles calculations. Our results corroborate the previously reported bending poison effect and size-dependent buckling behaviors. Under axial compression, current simulations predict a shell-to-column buckling mode transition for BluePNTs with increasing aspect ratios; further compression of BluePNTs with large aspect ratios results in a column-to-shell buckling mode transition. Associated critical buckling strains can be described by the continuum mechanics theory. We also simulated buckling behavior of black phosphorus nanotubes (BlackPNTs) and …


Wind Power Forecasting Methods Based On Deep Learning: A Survey, Xing Deng, Haijian Shao, Chunlong Hu, Dengbiao Jiang, Yingtao Jiang Jan 2020

Wind Power Forecasting Methods Based On Deep Learning: A Survey, Xing Deng, Haijian Shao, Chunlong Hu, Dengbiao Jiang, Yingtao Jiang

Electrical & Computer Engineering Faculty Research

Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of …


Dynamic Allocation/Reallocation Of Dark Cores In Many-Core Systems For Improved System Performance, Xingxing Huang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh, Mei Yang Jan 2020

Dynamic Allocation/Reallocation Of Dark Cores In Many-Core Systems For Improved System Performance, Xingxing Huang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh, Mei Yang

Electrical & Computer Engineering Faculty Research

A significant number of processing cores in any many-core systems nowadays and likely in the future have to be switched off or forced to be idle to become dark cores, in light of ever increasing power density and chip temperature. Although these dark cores cannot make direct contributions to the chip's throughput, they can still be allocated to applications currently running in the system for the sole purpose of heat dissipation enabled by the temperature gradient between the active and dark cores. However, allocating dark cores to applications tends to add extra waiting time to applications yet to be launched, …