Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Nevada, Las Vegas

Series

Engineering

Keyword
Publication Year
Publication

Articles 1 - 30 of 538

Full-Text Articles in Physical Sciences and Mathematics

How Dynamic Adsorption Controls Surfactant‑Enhanced Boiling, Mario R. Mata, Brandon Ortiz, Dhruv Luhar, Vesper Evereux, H. Jeremy Cho Oct 2022

How Dynamic Adsorption Controls Surfactant‑Enhanced Boiling, Mario R. Mata, Brandon Ortiz, Dhruv Luhar, Vesper Evereux, H. Jeremy Cho

Mechanical Engineering Faculty Research

No abstract provided.


An Approach For Material Model Identification Of A Composite Coating Using Micro-Indentation And Multi-Scale Simulations, Pouya Shojaei, Riccardo Scazzosi, Mohamed Trabia, Brendan O’Toole, Marco Giglio, Xing Zhang, Yiliang Liao, Andrea Manes Jan 2022

An Approach For Material Model Identification Of A Composite Coating Using Micro-Indentation And Multi-Scale Simulations, Pouya Shojaei, Riccardo Scazzosi, Mohamed Trabia, Brendan O’Toole, Marco Giglio, Xing Zhang, Yiliang Liao, Andrea Manes

Mechanical Engineering Faculty Research

While deposited thin film coatings can help enhance surface characteristics such as hardness and friction, their effective incorporation in product design is restricted by the limited understand-ing of their mechanical behavior. To address this, an approach combining micro-indentation and meso/micro-scale simulations was proposed. In this approach, micro-indentation testing was conducted on both the coating and the substrate. A meso-scale uniaxial compression finite element model was developed to obtain a material model of the coating. This material model was incorporated within an axisymmetric micro-scale model of the coating to simulate the indentation. The proposed approach was applied to a Ti/SiC metal …


Novel Architecture Of Onem2m-Based Convergence Platform For Mixed Reality And Iot, Seungwoon Lee, Woogeun Kil, Byeong Hee Roh, Si-Jung Kim, Jin Suk Kang Jan 2022

Novel Architecture Of Onem2m-Based Convergence Platform For Mixed Reality And Iot, Seungwoon Lee, Woogeun Kil, Byeong Hee Roh, Si-Jung Kim, Jin Suk Kang

College of Engineering Faculty Research

There have been numerous works proposed to merge augmented reality/mixed reality (AR/MR) and Internet of Things (IoT) in various ways. However, they have focused on their specific target applications and have limitations on interoperability or reusability when utilizing them to different domains or adding other devices to the system. This paper proposes a novel architecture of a convergence platform for AR/MR and IoT systems and services. The proposed architecture adopts the oneM2M IoT standard as the basic framework that converges AR/MR and IoT systems and enables the development of application services used in general-purpose environments without being subordinate to specific …


Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin Nov 2021

Global 3d Radiation Hydrodynamic Simulations Of Proto-Jupiter’S Convective Envelope, Zhaohuan Zhu, Yan-Fei Jiang, Hans Baehr, Andrew N. Youdin, Philip J. Armitage, Rebecca G. Martin

Physics & Astronomy Faculty Research

The core accretion model of giant planet formation has been challenged by the discovery of recycling flows between the planetary envelope and the disc that can slow or stall envelope accretion. We carry out 3D radiation hydrodynamic simulations with an updated opacity compilation to model the proto-Jupiter’s envelope. To isolate the 3D effects of convection and recycling, we simulate both isolated spherical envelopes and envelopes embedded in discs. The envelopes are heated at given rates to achieve steady states, enabling comparisons with 1D models. We vary envelope properties to obtain both radiative and convective solutions. Using a passive scalar, we …


Real-Time Pm10 Emission Rates From Paved Roads By Measurement Of Concentrations In The Vehicle's Wake Using On-Board Sensors Part 2. Comparison Of Scamper, Traker™, Flux Measurements, And Ap-42 Silt Sampling Under Controlled Conditions, Dennis R. Fitz, Kurt Bullimer, Vic Etyemezian, Hampden D. Kuhns, John A. Gillies, George Nikolich, David E. James, Rodney Langston, Russell S. Merle Jr. May 2021

Real-Time Pm10 Emission Rates From Paved Roads By Measurement Of Concentrations In The Vehicle's Wake Using On-Board Sensors Part 2. Comparison Of Scamper, Traker™, Flux Measurements, And Ap-42 Silt Sampling Under Controlled Conditions, Dennis R. Fitz, Kurt Bullimer, Vic Etyemezian, Hampden D. Kuhns, John A. Gillies, George Nikolich, David E. James, Rodney Langston, Russell S. Merle Jr.

Civil and Environmental Engineering and Construction Faculty Research

Representative soil was evenly applied to an 800-m section of road surface. The test area was of sufficient length to allow for measurement at constant speeds of up to 72 km hr−1. SCAMPER and TRAKER™ mobile measurement vehicles made repeated test runs while an instrumented tower measured upwind-downwind horizontal PM10 flux. AP-42 methods were used to collect silt samples and calculate PM10 emission factors. Both silt loadings and vehicle speeds were varied during the experiment. Street sweeping the as-found roadway showed an initial rise in PM10 emission rates. Both TRAKER and SCAMPER measured rapid decay of PM10 emission rates after …


Renewable Energy Generation And Ghg Emission Reduction Potential Of A Satellitewater Reuse Plant By Using Solar Photovoltaics And Anaerobic Digestion, Jonathan R. Bailey, Saria Bukhary, Jacimaria R. Batista, Sajjad Ahmad Feb 2021

Renewable Energy Generation And Ghg Emission Reduction Potential Of A Satellitewater Reuse Plant By Using Solar Photovoltaics And Anaerobic Digestion, Jonathan R. Bailey, Saria Bukhary, Jacimaria R. Batista, Sajjad Ahmad

Civil and Environmental Engineering and Construction Faculty Research

Wastewater treatment is a very energy-intensive process. The growing population, increased demands for energy and water, and rising pollution levels caused by fossil-fuel-based energy generation, warrants the transition from fossil fuels to renewable energy. This research explored the energy consumption offset of a satellite water reuse plant (WRP) by using solar photovoltaics (PVs) and anaerobic digestion. The analysis was performed for two types of WRPs: conventional (conventional activated sludge system (CAS) bioreactor with secondary clarifiers and dual media filtration) and advanced (bioreactor with membrane filtration (MBR)) treatment satellite WRPs. The associated greenhouse gas (GHG) emissions were also evaluated. For conventional …


Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen Feb 2021

Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen

Physics & Astronomy Faculty Research

© 2021, The Author(s). The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, …


Effect Of Heat Treatment On Microstructure And Hardness Of A Worn Rail Repaired Using Laser Powder Deposition, Ershad Mortazavian, Zhiyong Wang, Hualiang Teng Jan 2021

Effect Of Heat Treatment On Microstructure And Hardness Of A Worn Rail Repaired Using Laser Powder Deposition, Ershad Mortazavian, Zhiyong Wang, Hualiang Teng

Mechanical Engineering Faculty Research

The frequent replacement of worn rails on tracks brings an immense economic burden on the railroad industry, and also causes significant interruptions to railroad operation. Restoration of worn rails via laser powder deposition (LPD) can considerably reduce the associated maintenance costs. This study was focused on the use of LPD to repair the worn profile of a standard U.S. rail. The microstructure of the 304L stainless steel deposits with a minimum hardness of 85 HRB was composed of austenite, δ-ferrite, and sigma. Micropores were dispersed throughout the deposit, and microcracks were found at the rail-deposition interface. The pearlitic rail substrate …


Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li Dec 2020

Two New Finite Element Schemes And Their Analysis For Modeling Of Wave Propagation In Graphene, Jichun Li

Mathematical Sciences Faculty Research

© 2020 The Author(s) In this paper, we investigate a system of governing equations for modeling wave propagation in graphene. Compared to our previous work (Yang et al., 2020), here we re-investigate the governing equations by eliminating two auxiliary unknowns from the original model. A totally new stability for the model is established for the first time. Since the finite element scheme proposed in Yang et al. (2020) is only first order in time, here we propose two new schemes with second order convergence in time for the simplified modeling equations. Discrete stabilities inheriting exactly the same form as the …


Design Aspects, Energy Consumption Evaluation, And Offset For Drinking Water Treatment Operation, Saria Bukhary, Jacimaria Batista, Sajjad Ahmad Jun 2020

Design Aspects, Energy Consumption Evaluation, And Offset For Drinking Water Treatment Operation, Saria Bukhary, Jacimaria Batista, Sajjad Ahmad

Civil and Environmental Engineering and Construction Faculty Research

Drinking water treatment, wastewater treatment, and water distribution are energy-intensive processes. The goal of this study was to design the unit processes of an existing drinking water treatment plant (DWTP), evaluate the associated energy consumption, and then offset it using solar photovoltaics (PVs) to reduce carbon emissions. The selected DWTP, situated in the southwestern United States, utilizes coagulation, flocculation, sedimentation, filtration, and chlorination to treat 3.94 m3 of local river water per second. Based on the energy consumption determined for each unit process (validated using the plant’s data) and the plant’s available landholding, the DWTP was sized for solar PV …


Assessing The Potential For Greater Solar Development In West Texas, Usa, Dale D. Devitt, M. H. Young, J. P. Pierre May 2020

Assessing The Potential For Greater Solar Development In West Texas, Usa, Dale D. Devitt, M. H. Young, J. P. Pierre

Life Sciences Faculty Research

As population and economies continue to grow on a global scale, so too does the demand for energy. To improve reliability and independence of energy supplies, the U.S. and many other countries are seeking internally-sourced renewable energy; solar is one such renewable-energy source that meets these criteria. However, all energy sources exert some environmental impacts. In the case of solar, direct impacts stem mostly from alteration of land needed to host infrastructure. Understanding the environmental upside and downside potential of solar energy systems allows a more comprehensive, side-by-side comparison with different energy sources. In this article, we focus on the …


College Of Engineering Senior Design Competition Spring 2020, University Of Nevada, Las Vegas May 2020

College Of Engineering Senior Design Competition Spring 2020, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge. The senior design competition helps focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects on …


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen Jan 2020

Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen

Physics & Astronomy Faculty Research

We report on mechanical properties of blue phosphorus nanotubes (BluePNTs) from systematic molecular dynamics simulations, adopting a Stillinger-Weber potential with parameters determined by fitting to energetic and structural data from first-principles calculations. Our results corroborate the previously reported bending poison effect and size-dependent buckling behaviors. Under axial compression, current simulations predict a shell-to-column buckling mode transition for BluePNTs with increasing aspect ratios; further compression of BluePNTs with large aspect ratios results in a column-to-shell buckling mode transition. Associated critical buckling strains can be described by the continuum mechanics theory. We also simulated buckling behavior of black phosphorus nanotubes (BlackPNTs) and …


Wind Power Forecasting Methods Based On Deep Learning: A Survey, Xing Deng, Haijian Shao, Chunlong Hu, Dengbiao Jiang, Yingtao Jiang Jan 2020

Wind Power Forecasting Methods Based On Deep Learning: A Survey, Xing Deng, Haijian Shao, Chunlong Hu, Dengbiao Jiang, Yingtao Jiang

Electrical & Computer Engineering Faculty Research

Accurate wind power forecasting in wind farm can effectively reduce the enormous impact on grid operation safety when high permeability intermittent power supply is connected to the power grid. Aiming to provide reference strategies for relevant researchers as well as practical applications, this paper attempts to provide the literature investigation and methods analysis of deep learning, enforcement learning and transfer learning in wind speed and wind power forecasting modeling. Usually, wind speed and wind power forecasting around a wind farm requires the calculation of the next moment of the definite state, which is usually achieved based on the state of …


Dynamic Allocation/Reallocation Of Dark Cores In Many-Core Systems For Improved System Performance, Xingxing Huang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh, Mei Yang Jan 2020

Dynamic Allocation/Reallocation Of Dark Cores In Many-Core Systems For Improved System Performance, Xingxing Huang, Xiaohang Wang, Yingtao Jiang, Amit Kumar Singh, Mei Yang

Electrical & Computer Engineering Faculty Research

A significant number of processing cores in any many-core systems nowadays and likely in the future have to be switched off or forced to be idle to become dark cores, in light of ever increasing power density and chip temperature. Although these dark cores cannot make direct contributions to the chip's throughput, they can still be allocated to applications currently running in the system for the sole purpose of heat dissipation enabled by the temperature gradient between the active and dark cores. However, allocating dark cores to applications tends to add extra waiting time to applications yet to be launched, …


Bringing Statistical Learning Machines Together For Hydro-Climatological Predictions - Case Study For Sacramento San Joaquin River Basin, California, Balbhadra Thakur, Ajay Kalra, Sajjad Ahmad, Kenneth W. Lamb, Venkat Lakshmi Dec 2019

Bringing Statistical Learning Machines Together For Hydro-Climatological Predictions - Case Study For Sacramento San Joaquin River Basin, California, Balbhadra Thakur, Ajay Kalra, Sajjad Ahmad, Kenneth W. Lamb, Venkat Lakshmi

Civil and Environmental Engineering and Construction Faculty Research

Study region: Sacramento San Joaquin River Basin, California Study focus: The study forecasts the streamflow at a regional scale within SSJ river basin with largescale climate variables. The proposed approach eliminates the bias resulting from predefined indices at regional scale. The study was performed for eight unimpaired streamflow stations from 1962–2016. First, the Singular Valued Decomposition (SVD) teleconnections of the streamflow corresponding to 500 mbar geopotential height, sea surface temperature, 500 mbar specific humidity (SHUM500), and 500 mbar U-wind (U500) were obtained. Second, the skillful SVD teleconnections were screened non-parametrically. Finally, the screened teleconnections were used as the streamflow predictors …


College Of Engineering Senior Design Competition Fall 2019, University Of Nevada, Las Vegas Dec 2019

College Of Engineering Senior Design Competition Fall 2019, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge. The senior design competition helps focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects on …


Design And Modeling Of A New Biomimetic Soft Robotic Jellyfish Using Ipmc-Based Electroactive Polymers, Zakai J. Olsen, Kwang J. Kim Nov 2019

Design And Modeling Of A New Biomimetic Soft Robotic Jellyfish Using Ipmc-Based Electroactive Polymers, Zakai J. Olsen, Kwang J. Kim

Mechanical Engineering Faculty Research

Smart materials and soft robotics have been seen to be particularly well-suited for developing biomimetic devices and are active fields of research. In this study, the design and modeling of a new biomimetic soft robot is described. Initial work was made in the modeling of a biomimetic robot based on the locomotion and kinematics of jellyfish. Modifications were made to the governing equations for jellyfish locomotion that accounted for geometric differences between biology and the robotic design. In particular, the capability of the model to account for the mass and geometry of the robot design has been added for better …


Modifications Of The Cztse/Mo Back-Contact Interface By Plasma Treatments, Wenjin Chen, Teoman Taskesen, David Nowak, Ulf Mikolajczak, Mohamed H. Sayed, Devendra Pareek, Jorg Ohland, Thomas Schnabel, Erik Ahlswede, Dirk Hauschild, Lothar Weinhardt, Clemens Heske, Jurgen Parisi, Levent Gutay Aug 2019

Modifications Of The Cztse/Mo Back-Contact Interface By Plasma Treatments, Wenjin Chen, Teoman Taskesen, David Nowak, Ulf Mikolajczak, Mohamed H. Sayed, Devendra Pareek, Jorg Ohland, Thomas Schnabel, Erik Ahlswede, Dirk Hauschild, Lothar Weinhardt, Clemens Heske, Jurgen Parisi, Levent Gutay

Chemistry and Biochemistry Faculty Research

Molybdenum (Mo) is the most commonly used back-contact material for copper zinc tin selenide (CZTSe)-based thin-film solar cells. For most fabrication methods, an interfacial molybdenum diselenide (MoSe2) layer with an uncontrolled thickness is formed, ranging from a few tens of nm up to ≈1 μm. In order to improve the control of the back-contact interface in CZTSe solar cells, the formation of a MoSe2 layer with a homogeneous and defined thickness is necessary. In this study, we use plasma treatments on the as-grown Mo surface prior to the CZTSe absorber formation, which consists of the deposition of stacked metallic layers …


Non-Einstein Viscosity Phenomenon Of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed By High-Shear Stress, Sing-Hoon Kim, Kisuk Choi, Kyouk Ryeol Choi, Taesung Kim, Jonghwan Suhr, Kwang Jin Kim, Hyoung Jin Choi, Jae-Do Nam Jun 2019

Non-Einstein Viscosity Phenomenon Of Acrylonitrile–Butadiene–Styrene Composites Containing Lignin–Polycaprolactone Particulates Highly Dispersed By High-Shear Stress, Sing-Hoon Kim, Kisuk Choi, Kyouk Ryeol Choi, Taesung Kim, Jonghwan Suhr, Kwang Jin Kim, Hyoung Jin Choi, Jae-Do Nam

Mechanical Engineering Faculty Research

Lignin powder was modified via ring-opening polymerization of caprolactone to form a lignin–polycaprolactone (LPCL) particulate. The LPCL particulates were mixed with an acrylonitrile–butadiene–styrene (ABS) matrix at an extremely high rotational speed of up to 3000 rpm, which was achieved by a closed-loop screw mixer and in-line melt extruder. Using this high-shear extruding mixer, the LPCL particulate size was controlled in the range of 3395 nm (conventional twin-screw extrusion) down to 638 nm (high-shear mixer of 3000 rpm) by altering the mixing speed and time. The resulting LPCL/ABS composites clearly showed non-Einstein viscosity phenomena, exhibiting reduced viscosity (2130 Pa·s) compared to …


College Of Engineering Senior Design Competition Spring 2019, University Of Nevada, Las Vegas May 2019

College Of Engineering Senior Design Competition Spring 2019, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge. The senior design competition helps focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects on …


Changes In Snow Phenology From 1979 To 2016 Over The Tianshan Mountains, Central Asia, Tao Yang, Qian Li, Sajjad Ahmad, Hongfei Zhou, Lanhai Li Mar 2019

Changes In Snow Phenology From 1979 To 2016 Over The Tianshan Mountains, Central Asia, Tao Yang, Qian Li, Sajjad Ahmad, Hongfei Zhou, Lanhai Li

Civil and Environmental Engineering and Construction Faculty Research

Snowmelt from the Tianshan Mountains (TS) is a major contributor to the water resources of the Central Asian region. Thus, changes in snow phenology over the TS have significant implications for regional water supplies and ecosystem services. However, the characteristics of changes in snow phenology and their influences on the climate are poorly understood throughout the entire TS due to the lack of in situ observations, limitations of optical remote sensing due to clouds, and decentralized political landscapes. Using passive microwave remote sensing snow data from 1979 to 2016 across the TS, this study investigates the spatiotemporal variations of snow …


First Observation Of P-Odd Gamma Asymmetry In Polarized Neutron Capture On Hydrogen, D. Blyth, J. Fry, N. Fomin, R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, Alex Barzilov, J. D. Bowman, N. Birge, J. R. Calarco, T. E. Chupp, V. Cianciolo, C. E. Coppola, C. B. Crawford, K. Craycraft, D. Evans, C. Fieseler, E. Frlež, I. Garishvili, M. T. W. Gericke, R. C. Gillis, K. B. Grammer, G. L. Greene, J. Hall, J. Hamblen, C. Hayes, E. B. Iverson, M. L. Kabir Dec 2018

First Observation Of P-Odd Gamma Asymmetry In Polarized Neutron Capture On Hydrogen, D. Blyth, J. Fry, N. Fomin, R. Alarcon, L. Alonzi, E. Askanazi, S. Baeßler, S. Balascuta, L. Barrón-Palos, Alex Barzilov, J. D. Bowman, N. Birge, J. R. Calarco, T. E. Chupp, V. Cianciolo, C. E. Coppola, C. B. Crawford, K. Craycraft, D. Evans, C. Fieseler, E. Frlež, I. Garishvili, M. T. W. Gericke, R. C. Gillis, K. B. Grammer, G. L. Greene, J. Hall, J. Hamblen, C. Hayes, E. B. Iverson, M. L. Kabir

Mechanical Engineering Faculty Research

We report the first observation of the parity-violating gamma-ray asymmetry A(gamma)(np) in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. A(gamma)(np) isolates the Delta I = 1, S-3(1)-> P-3(1) component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless effective field theory… See full text for full abstract.


College Of Engineering Senior Design Competition Fall 2018, University Of Nevada, Las Vegas Dec 2018

College Of Engineering Senior Design Competition Fall 2018, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge. The senior design competition helps focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects on …


Management Of An Urban Stormwater System Using Projected Future Scenarios Of Climate Models: A Watershed-Based Modeling Approach, Ranjeet Thakali, Ajay Kalra, Sajjad Ahmad, Kamal Qaiser Apr 2018

Management Of An Urban Stormwater System Using Projected Future Scenarios Of Climate Models: A Watershed-Based Modeling Approach, Ranjeet Thakali, Ajay Kalra, Sajjad Ahmad, Kamal Qaiser

Civil and Environmental Engineering and Construction Faculty Research

Anticipating a proper management needs for urban stormwater due to climate change is becoming a critical concern to water resources managers. In an effort to identify best management practices and understand the probable future climate scenarios, this study used high-resolution climate model data in conjunction with advanced statistical methods and computer simulation. Climate model data from the North American Regional Climate Change Assessment Program (NARCCAP) were used to calculate the design storm depths for the Gowan Watershed of Las Vegas Valley, Nevada. The Storm Water Management Model (SWMM), developed by the Environmental Protection Agency (EPA), was used for hydrological modeling. …


Climate Change And Eutrophication: A Short Review, Mohammad Nazari-Sharabian, Sajjad Ahmad, Moses Karakouzian Jan 2018

Climate Change And Eutrophication: A Short Review, Mohammad Nazari-Sharabian, Sajjad Ahmad, Moses Karakouzian

Civil and Environmental Engineering and Construction Faculty Research

Water resources are vital not only for human beings but essentially all ecosystems. Human health is at risk if clean drinking water becomes contaminated. Water is also essential for agriculture, manufacturing, energy production and other diverse uses. Therefore, a changing climate and its potential effects put more pressure on water resources. Climate change may cause increased water demand as a result of rising temperatures and evaporation while decreasing water availability. On the other hand, extreme events as a result of climate change can increase surface runoff and flooding, deteriorating water quality as well. One effect is water eutrophication, which occurs …


College Of Engineering Senior Design Competition Fall 2017, University Of Nevada, Las Vegas Dec 2017

College Of Engineering Senior Design Competition Fall 2017, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge. The senior design competition helps focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects on …


Higher Education Capacity Building In Water Resources Engineering And Management To Support Achieving The Sustainable Development Goal For Water In Pakistan, Steven J. Burian, Mercedes Ward, Tariq Banuri, M. Aslam Chaudhry, Sajjad Ahmad, Bakhshal Lashari, Rasool Bux Mahar, Davey Stevenson, Jim Vanderslice, Kamran Ansari, Munir Babar, Abdul Latif Qureshi Jun 2017

Higher Education Capacity Building In Water Resources Engineering And Management To Support Achieving The Sustainable Development Goal For Water In Pakistan, Steven J. Burian, Mercedes Ward, Tariq Banuri, M. Aslam Chaudhry, Sajjad Ahmad, Bakhshal Lashari, Rasool Bux Mahar, Davey Stevenson, Jim Vanderslice, Kamran Ansari, Munir Babar, Abdul Latif Qureshi

Civil and Environmental Engineering and Construction Faculty Research

Achieving the Sustainable Development Goals requires a multi‐pronged approach, with a key element being the development of a trained Community of Practice to sustain the advances in the relevant sectors. The engagement of higher education as a catalyst in the development and capacity building of the next generation of professionals and citizens comprising the Community of Practice is essential to meet the challenges of poverty, climate change, and clean water and to sustain those advances past 2030. This paper describes a capacity building program funded by the United States Agency for International Development to partner the University of Utah, in …


Potential Of Rainwater Harvesting In Meeting The Domestic Outdoor Demand: A Study In Dry And Wet Regions Of The United States, Kazi Ali Tamaddun, Ajay Kalra, Sajjad Ahmad May 2017

Potential Of Rainwater Harvesting In Meeting The Domestic Outdoor Demand: A Study In Dry And Wet Regions Of The United States, Kazi Ali Tamaddun, Ajay Kalra, Sajjad Ahmad

Civil and Environmental Engineering and Construction Faculty Research

Feasibility of meeting the outdoor water demand with rainwater harvesting (RWH) was evaluated for the states of Arizona and Florida as representatives of dry and wet regions, respectively, using a system dynamic model. The potential of RWH was found to be highly sensitive to the demand of water, desert landscaping potential, and the percentage of households with RWH systems. The percentage of demand met through RWH and the storage potential of a 50-gallon rainwater barrel was found to be significant even for arid regions. The model can be used to compare among various influencing parameters of RWH systems.