Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Missouri University of Science and Technology

2007

Kinematic/Dynamic Controller

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Control Of Nonholonomic Mobile Robot Formations Using Neural Networks, Jagannathan Sarangapani, Travis Alan Dierks Oct 2007

Control Of Nonholonomic Mobile Robot Formations Using Neural Networks, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper the control of formations of multiple nonholonomic mobile robots is attempted by integrating a kinematic controller with a neural network (NN) computed-torque controller. A combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers. The NN is introduced to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are uniformly ultimately bounded, and numerical results are provided.


Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks Jan 2007

Neural Network Control Of Robot Formations Using Rise Feedback, Jagannathan Sarangapani, Travis Alan Dierks

Electrical and Computer Engineering Faculty Research & Creative Works

In this paper, a combined kinematic/torque control law is developed for leader-follower based formation control using backstepping in order to accommodate the dynamics of the robots and the formation in contrast with kinematic-based formation controllers that are widely reported in the literature. A neural network (NN) is introduced along with robust integral of the sign of the error (RISE) feedback to approximate the dynamics of the follower as well as its leader using online weight tuning. It is shown using Lyapunov theory that the errors for the entire formation are asymptotically stable and the NN weights are bounded as opposed …