Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 126

Full-Text Articles in Physical Sciences and Mathematics

Towards A Quantum Notion Of Covariance In Spherically Symmetric Loop Quantum Gravity, Rodolfo Gambini, Javier Olmedo, Jorge Pullin Jan 2022

Towards A Quantum Notion Of Covariance In Spherically Symmetric Loop Quantum Gravity, Rodolfo Gambini, Javier Olmedo, Jorge Pullin

Faculty Publications

The covariance of loop quantum gravity studies of spherically symmetric space-times has recently been questioned. This is a reasonable worry, given that they are formulated in terms of slicing-dependent variables. We show explicitly that the resulting space-times, obtained from Dirac observables of the quantum theory, are covariant in the usual sense of the way-they preserve the quantum line element-for any gauge that is stationary (in the exterior, if there is a horizon). The construction depends crucially on the details of the Abelianized quantization considered, the satisfaction of the quantum constraints, and the recovery of standard general relativity in the classical …


Droplet-Based Fuel Property Measurements, Wanjun Dang Dec 2021

Droplet-Based Fuel Property Measurements, Wanjun Dang

LSU Doctoral Dissertations

Ongoing work to find renewable biofuels to function as drop-in replacements or blending components with gasoline has identified a large number of fuel candidates. Given the vast number of potential biomass-derived fuel molecules and limited sample sizes, screening tools are required to down-select candidate fuels having desired physical properties to ensure good engine performance. This work investigates approaches for rapid screening of candidate fuels using micro-liter sample sizes targeting four properties -- surface tension, viscosity, heat of vaporization (HOV), and vapor pressure. Measurement techniques for fuel properties are developed based on unit phenomena for liquid fuel droplets including droplet oscillation …


Limits On Parameter Estimation Of Quantum Channels, Vishal Katariya Dec 2021

Limits On Parameter Estimation Of Quantum Channels, Vishal Katariya

LSU Doctoral Dissertations

The aim of this thesis is to develop a theoretical framework to study parameter estimation of quantum channels. We begin by describing the classical task of parameter estimation that we build upon. In its most basic form, parameter estimation is the task of obtaining an estimate of an unknown parameter from some experimental data. This experimental data can be seen as a number of samples of a parameterized probability distribution. In general, the goal of such a task is to obtain an estimate of the unknown parameter while minimizing its error.

We study the task of estimating unknown parameters which …


An Argument For The Second Nuclear Era: Salvaging The Atomic Age In Response To Climate Change, Ian Sager Dec 2021

An Argument For The Second Nuclear Era: Salvaging The Atomic Age In Response To Climate Change, Ian Sager

Honors Theses

No abstract provided.


Interface-Induced Lattice Structure And Magnetism In Ultrathin Transition Metal Oxide Trilayers, David Howe Nov 2021

Interface-Induced Lattice Structure And Magnetism In Ultrathin Transition Metal Oxide Trilayers, David Howe

LSU Doctoral Dissertations

The study of magnetism has been a rich playground in condensed matter physics due to the multiple mechanisms capable of producing the effect and its relationship to multiple characteristics of a material. Transition metal oxides (TMOs) have been of particular interest for ongoing research into magnetic phenomenon due to the abundance of interesting physical phenomena found in member systems such as colossal magnetoresistance, skyrmion formation, and interface-driven 2D electron gases. Thin films introduce an additional thickness-dependent element, where reduction below a critical thickness eliminates the magnetic coherence of a system and FM order is lost. The atomic structure of these …


Electromagnetic Transitions And Beta Decays In Nuclei From The Ab Initio Symmetry-Adapted No-Core Shell Model, Grigor Sargsyan Aug 2021

Electromagnetic Transitions And Beta Decays In Nuclei From The Ab Initio Symmetry-Adapted No-Core Shell Model, Grigor Sargsyan

LSU Doctoral Dissertations

Nuclear physics today is a diverse field, involving research that extends from the minus- cule scales of neutrons and protons to the colossal dimensions of astrophysical objects in the universe. And since the ab initio methods in nuclear physics use realistic internucleon interactions, nuclear modeling has gained predictive capabilities that enable us to probe ever more deeply into the fundamental nature of matter. One of these models – the symmetry- adapted no-core shell model (SA-NCSM) – is capable of reaching the medium-mass region of the chart of the nuclides, by exploiting the emergent symmetries of nuclei, and is therefore well-suited …


Effects Of Structure, Crystallographic Orientation, And Dimensionality On Emergent Properties Of Transition Metal Oxide Thin Films, Prahald Siwakoti Aug 2021

Effects Of Structure, Crystallographic Orientation, And Dimensionality On Emergent Properties Of Transition Metal Oxide Thin Films, Prahald Siwakoti

LSU Doctoral Dissertations

SrRuO3 is the only example of ferromagnetic perovskite oxide of a 4d transition metal, wherein the electron -electron correlation is still relevant while the heavier 4d ion (Ru) gives it a larger spin-orbit coupling strength which makes it an interesting material to study. In this thesis, we present our investigation of the structure and properties of SrRuO3 thin films of varying thickness grown on [001] and [111] crystallographic orientation of the SrTiO3 substrate. For SrRuO3(001), we present microscopically the presence of 90◦ in-plane rotated structural domains that are identified by the difference in octahedral rotations and …


Structural Shielding Considerations For Vmat, Ana Lucia Dieguez Jul 2021

Structural Shielding Considerations For Vmat, Ana Lucia Dieguez

LSU Master's Theses

Introduction: As noted in National Council on Radiation Protection and Measurements (NCRP) Report 151, the medical physicist or other qualified expert has the responsibility to keep abreast of any new technology or treatment method that could potentially impact structural shielding design. Volumetric arc therapy (VMAT) became prevalent after the publication of Report 151 and thus was not explicitly addressed in Report 151. If the shielding-related characteristics of VMAT differ enough from the expectations of Report 151, especially in the circumstance of a vault utilized exclusively for VMAT, a shielding design based on Report 151 could potentially be inadequate. The …


Relating Dust Reference Models To Conventional Systems In Manifestly Gauge Invariant Perturbation Theory, Kristina Giesel, Bao-Fei Li, Parampreet Singh Jul 2021

Relating Dust Reference Models To Conventional Systems In Manifestly Gauge Invariant Perturbation Theory, Kristina Giesel, Bao-Fei Li, Parampreet Singh

Faculty Publications

Models with dust reference fields in relational formalism have proved useful in understanding the construction of gauge invariant perturbation theory to arbitrary orders in the canonical framework. These reference fields modify the dynamical equations for perturbation equations. However, important questions remain open on the relation with conventional perturbation theories of inflaton coupled to gravity and of multifluid systems, and on understanding modifications in terms of physical degrees of freedom. These gaps are filled in this manuscript for Brown-Kuchar and Gaussian dust models, both of which involve three scalar physical degrees of freedom. We establish a relationship of these models with …


Simulation Of Compound Flood Events In Low-Gradient Coastal Watershed, Felix Luis Santiago-Collazo Jun 2021

Simulation Of Compound Flood Events In Low-Gradient Coastal Watershed, Felix Luis Santiago-Collazo

LSU Doctoral Dissertations

Low-gradient coastal watersheds are susceptible to flooding caused by various flows such as rainfall, tides, and storm surge. Compound flooding occurs when at least two of these mechanisms happen simultaneously or in close succession. Different inundation models, observed data, and/or a combination of these are coupled through varying techniques involving one-way, loosely, tightly, or fully coupled approaches to assess compound flooding. This study presents a one-dimensional (1-D), fully coupled compound inundation model based on the Shallow Water equations. This model approach simultaneously simulates the free water surface variations in the ocean domain (i.e., tide and storm surge modeling), rainfall-runoff in …


A Generalized, Modular Approach To Treating Moving Tumors With Ion Beams, Michelle Jennifer Lis Jun 2021

A Generalized, Modular Approach To Treating Moving Tumors With Ion Beams, Michelle Jennifer Lis

LSU Doctoral Dissertations

Despite advancements in cancer therapy, certain indications continue to have a poor prognosis, including cancers of the thorax. Existing methods for treating moving tumors with carbon ions have shown promise, but require technologically complex facilities and still have inherent limitations to mitigating tumor motion. The goal of this dissertation was to develop and test a safe, portable, and modular motion-synchronized dose delivery system (M-DDS) and its peripheral components as a framework for studying motion mitigation with ion beams.

We designed and integrated a motion-synchronized radiotherapy approach, called multi-phase 4D delivery (MP4D), as modular units of a clinical dose delivery system. …


Sphincs_Bssn: A General Relativistic Smooth Particle Hydrodynamics Code For Dynamical Spacetimes, S. Rosswog, P. Diener Jun 2021

Sphincs_Bssn: A General Relativistic Smooth Particle Hydrodynamics Code For Dynamical Spacetimes, S. Rosswog, P. Diener

Faculty Publications

We present a new methodology for simulating self-gravitating general-relativistic fluids. In our approach the fluid is modelled by means of Lagrangian particles in the framework of a general-relativistic (GR) smoothed particle hydrodynamics (SPH) formulation, while the spacetime is evolved on a mesh according to the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation that is also frequently used in Eulerian GR-hydrodynamics. To the best of our knowledge this is the first Lagrangian fully general relativistic hydrodynamics code (all previous SPH approaches used approximations to GR-gravity). A core ingredient of our particle-mesh approach is the coupling between the gas (represented by particles) and the spacetime (represented …


Validation Of A Respiratory Gating System For Automated Delivery Of The Deep Inspiration Breath-Hold Technique, Michael G. Stock May 2021

Validation Of A Respiratory Gating System For Automated Delivery Of The Deep Inspiration Breath-Hold Technique, Michael G. Stock

LSU Master's Theses

Purpose: To validate the performance of a respiratory gating system for the automated delivery of the deep inspiration breath-hold (DIBH) technique.

Methods: The gating system utilized an automatic gating interface (Elekta Response) which connected a marker-based respiratory motion monitoring system to the linear accelerator control system. The gating system was characterized dosimetrically and temporally using two distinct approaches. Central-axis output and energy constancy were evaluated across 8 beam-matched linear accelerators. Additionally, a representative set of 5 treatment plans were delivered both non-gated and gated to a 2D diode array (MapCHECK). The respiratory motion monitoring system optically tracked a reflective marker …


Optomechanical Quantum Entanglement, Kahlil Y. Dixon Mar 2021

Optomechanical Quantum Entanglement, Kahlil Y. Dixon

LSU Doctoral Dissertations

As classical technology approaches its limits, exploration of quantum technologies is critical. Quantum optics will be the basis of various cutting-edge research and applications in quantum technology. In particular, quantum optics quite efficacious when applied to quantum networks and the quantum internet. Quantum Optomechanics, a subfield of quantum optics, contains some novel methods for entanglement generation. These entanglement production methods exploit the noise re-encoding process, which is most often associated with creating unwanted phase noise in optical circuits. Using the adapted two-photon formalism and experimental results, we simulate (in an experimentally viable parameter space) optomechanical entanglement generation experiments. These simulations …


Identification And Reduction Of Scattered Light Noise In Ligo, Siddharth Soni Mar 2021

Identification And Reduction Of Scattered Light Noise In Ligo, Siddharth Soni

LSU Doctoral Dissertations

We ushered into a new era of gravitational wave astronomy in 2015 when Advanced LIGO gravitational wave detectors in Livingston, Louisiana and Hanford, Washington observed a gravitational wave signal from the merger of binary black holes. The first detected GW150914 was a part of first Observing run (O1) and since then there have been a total of 3 Observing runs. Advanced Virgo detector in Cascina, Italy joined the efforts in the third Observing run (O3) which spanned from April 1, 2019, to March 27, 2020. It was split into O3a and O3b with a month long break between them, during …


Energy-Constrained Distinguishability Measures For Assessing Performance In Quantum Information Processing, Kunal Sharma Mar 2021

Energy-Constrained Distinguishability Measures For Assessing Performance In Quantum Information Processing, Kunal Sharma

LSU Doctoral Dissertations

The aim of this thesis is to develop a framework for assessing performance in quantum information processing with continuous variables. In particular, we focus on quantifying the fundamental limitations on communication and computation over bosonic Gaussian systems. Due to their infinite-dimensional structure, we make a realistic assumption of energy constraints on the input states of continuous-variable (CV) quantum operations. Our first contribution is to show that energy-constrained distinguishability measures can be used to establish tight upper bounds on the communication capacities of phase-insensitive, bosonic Gaussian channels -- thermal, amplifier, and additive-noise channels. We then prove that an optimal Gaussian input …


Majorana Quasiparticles In Topological Material Interfaces, David Alspaugh Mar 2021

Majorana Quasiparticles In Topological Material Interfaces, David Alspaugh

LSU Doctoral Dissertations

In this dissertation we analyze how Majorana quasiparticles found on material interfaces of both topological insulators (TIs) and topological superconductors (TSCs) are affected by imperfections within their local environment. While these quasiparticles are predicted to be critical for the construction of quantum computers, they are typically modeled only under pristine conditions. Thus, although quantum computers may require the spatial manipulation of Majorana quasiparticles, these topological material interfaces are commonly studied in static contexts and their response to manipulation remains an open question. We first demonstrate that interface potentials on the topological insulator Bi2Se3 can enable the emergence …


Applications Of Quantum Optics: From The Quantum Internet To Analogue Gravity, Anthony Brady Mar 2021

Applications Of Quantum Optics: From The Quantum Internet To Analogue Gravity, Anthony Brady

LSU Doctoral Dissertations

The aim of this thesis is to highlight applications of quantum optics in two very distinct fields: space-based quantum communication and the Hawking effect in analogue gravity. Regarding the former: We simulate and analyze a constellation of satellites, equipped with entangled photon-pair sources, which provide on-demand entanglement distribution ser- vices to terrestrial receiver stations. Satellite services are especially relevant for long-distance quantum-communication scenarios, as the loss in satellite-based schemes scales more favor- ably with distance than in optical fibers or in atmospheric links, though establishing quantum resources in the space-domain is expensive. We thus develop an optimization technique which balances …


Updated Miniboone Neutrino Oscillation Results With Increased Data And New Background Studies, A. A. Aguilar-Arevalo, B. C. Brown, J. M. Conrad, R. Dharmapalan, A. Diaz, Z. Djurcic, D. A. Finley, R. Ford, G. T. Garvey, S. Gollapinni, A. Hourlier, E-C Huang, N. W. Kamp, G. Karagiorgi, T. Katori, T. Kobilarcik, K. Lin, W. C. Louis, C. Mariani, W. Marsh, G. B. Mills, J. Mirabal-Martinez, C. D. Moore, R. H. Nelson, J. Nowak, I Parmaksiz, Z. Pavlovic, H. Ray, B. P. Roe, A. D. Russell, A. Schneider, M. H. Shaevitz, H. Siegel, J. Spitz, I. Stancu, R. Tayloe, R. T. Thornton, M. Tzanov, R. G. Van De Water, D. H. White, E. D. Zimmerman Mar 2021

Updated Miniboone Neutrino Oscillation Results With Increased Data And New Background Studies, A. A. Aguilar-Arevalo, B. C. Brown, J. M. Conrad, R. Dharmapalan, A. Diaz, Z. Djurcic, D. A. Finley, R. Ford, G. T. Garvey, S. Gollapinni, A. Hourlier, E-C Huang, N. W. Kamp, G. Karagiorgi, T. Katori, T. Kobilarcik, K. Lin, W. C. Louis, C. Mariani, W. Marsh, G. B. Mills, J. Mirabal-Martinez, C. D. Moore, R. H. Nelson, J. Nowak, I Parmaksiz, Z. Pavlovic, H. Ray, B. P. Roe, A. D. Russell, A. Schneider, M. H. Shaevitz, H. Siegel, J. Spitz, I. Stancu, R. Tayloe, R. T. Thornton, M. Tzanov, R. G. Van De Water, D. H. White, E. D. Zimmerman

Faculty Publications

The MiniBooNE experiment at Fermilab reports a total excess of 638.0 +/- 52.1(stat) +/- 122.2(syst) electronlike events from a data sample corresponding to 18.75 x 10(20) protons-on-target in neutrino mode, which is a 46% increase in the data sample with respect to previously published results and 11.27 x 10(20) protons-on-target in antineutrino mode. The overall significance of the excess, 4.8 sigma, is limited by systematic uncertainties, assumed to be Gaussian, as the statistical significance of the excess is 12.2 sigma. The additional statistics allow several studies to address questions on the source of the excess. First, we provide two-dimensional plots …


Smart Quantum Technologies Using Photons, Narayan Bhusal Mar 2021

Smart Quantum Technologies Using Photons, Narayan Bhusal

LSU Doctoral Dissertations

The technologies utilizing quantum states of light have been in the spotlight for the last two decades. In this regard, quantum metrology, quantum imaging, quantum-optical communication are some of the important applications that exploit fascinating quantum properties like quantum superposition, quantum correlations, and nonclassical photon statistics. However, the state-of-art technologies operating at the single-photon level are not robust enough to truly realize a reliable quantum-photonic technology.

In Chapter 1, I present a historical account of photon-based technologies. Furthermore, I discuss recent efforts and encouraging developments in the field of quantum-photonic technologies, and major challenges for the experimental realization of reliable …


Towards A General Framework For Practical Quantum Network Protocols, Sumeet Khatri Mar 2021

Towards A General Framework For Practical Quantum Network Protocols, Sumeet Khatri

LSU Doctoral Dissertations

The quantum internet is one of the frontiers of quantum information science. It will revolutionize the way we communicate and do other tasks, and it will allow for tasks that are not possible using the current, classical internet. The backbone of a quantum internet is entanglement distributed globally in order to allow for such novel applications to be performed over long distances. Experimental progress is currently being made to realize quantum networks on a small scale, but much theoretical work is still needed in order to understand how best to distribute entanglement and to guide the realization of large-scale quantum …


Quasinormal Modes And Their Overtones At The Common Horizon In A Binary Black Hole Merger, Pierre Mourier, Xisco Jimenez Forteza, Daniel Pook-Kolb, Dadri Krishnan, Erik Schnetter Feb 2021

Quasinormal Modes And Their Overtones At The Common Horizon In A Binary Black Hole Merger, Pierre Mourier, Xisco Jimenez Forteza, Daniel Pook-Kolb, Dadri Krishnan, Erik Schnetter

Faculty Publications

It is expected that all astrophysical black holes in equilibrium are well described by the Kerr solution. Moreover, any black hole far away from equilibrium, such as one initially formed in a compact binary merger or by the collapse of a massive star, will eventually reach a final equilibrium Kerr state. At sufficiently late times in this process of reaching equilibrium, we expect that the black hole is modeled as a perturbation around the final state. The emitted gravitational waves will then be damped sinusoids with frequencies and damping times given by the quasinormal mode spectrum of the final Kerr …


Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu Nov 2020

Adsorption And Reconfiguration Of Amphiphiles At Silica-Water Interfaces: Role Of Electrostatic Interactions, Van Der Waals Forces And Hydrogen Bonds, Yao Wu

LSU Doctoral Dissertations

The ability to explore and predict metastable structures of hybrid self-assemblies is of central importance for the next generation of advanced materials with novel properties. As compared to their thermodynamically stable forms, the kinetically stabilized materials show improved functionality potentially over their stable counterparts. The self-assembly processes usually originate from weak intermolecular interactions, involving a dynamic competition between attractive and repulsive interactions. These weak forces, including van der Waals (vdW), electrostatic interaction and the hydrogen bonding (H-bonding), can be tuned by external stimuli, e.g., confinement, temperature and ionization, and consequently driving hybrid materials into different configurations. It is challenging to …


A Study Of 26al(P, Γ)27si With The Silicon Array For Branching Ratio Experiments (Sabre), Erin Courtney Good Nov 2020

A Study Of 26al(P, Γ)27si With The Silicon Array For Branching Ratio Experiments (Sabre), Erin Courtney Good

LSU Doctoral Dissertations

The observation of the radioisotope 26Al is an indicator of ongoing nucleosynthesis in the Galaxy due to its short lifetime (t1/2 = 7.2 × 105 yr) on Galactic timescales. It is thought to be synthesized in several different environments in our Galaxy, one of which is in classical novae. Classical novae are stellar explosions that occur on the surface of a white dwarf in a binary system with a main sequence star. The isotopic production resulting from the nucleosynthesis that drives these explosions can be modeled with the input of nuclear reaction rates. In recent years, many …


A Modelling Study For Smart Pigging Technique For Pipeline Leak Detection, Caitlyn Judith Thiberville Nov 2020

A Modelling Study For Smart Pigging Technique For Pipeline Leak Detection, Caitlyn Judith Thiberville

LSU Master's Theses

Although leak incidents continue, a pipeline remains the most reliable mode of transportation within the oil and gas industry. It becomes even more important today because the projection for new pipelines is expected to increase by 1 billion BOE through 2035. In addition, increasing number and length of subsea tiebacks face new challenges in term of data acquisition, monitoring, analysis, and remedial actions. Passive leak-detection methods commonly used in the industry have been successful with some limitations in that they often cannot detect small leaks and seeps. In addition to a thorough review of related topics, this study investigates how …


A Coded Aperture Microscope For X-Ray Fluorescence Full-Field Imaging, D. P. Siddons, A. J. Kuczewski, A. K. Rumaiz, R. Tappero, M Idir, K. Nakhoda, J. Khanfri, V. Singh, E. R. Farquhar, M. Sullivan, D. Abel, D. J. Brady, X. Yuan Nov 2020

A Coded Aperture Microscope For X-Ray Fluorescence Full-Field Imaging, D. P. Siddons, A. J. Kuczewski, A. K. Rumaiz, R. Tappero, M Idir, K. Nakhoda, J. Khanfri, V. Singh, E. R. Farquhar, M. Sullivan, D. Abel, D. J. Brady, X. Yuan

Faculty Publications

The design and construction of an instrument for full-field imaging of the X-ray fluorescence emitted by a fully illuminated sample are presented. The aim is to produce an X-ray microscope with a few micrometers spatial resolution, which does not need to scan the sample. Since the fluorescence from a spatially inhomogeneous sample may contain many fluorescence lines, the optic which will provide the magnification of the emissions must be achromatic, i.e. its optical properties must be energy-independent. The only optics which fulfill this requirement in the X-ray regime are mirrors and pinholes. The throughput of a simple pinhole is very …


Demonstration Of Dynamic Thermal Compensation For Parametric Instability Suppression In Advanced Ligo, T. Hardwick, V. J. Hamedan, C. Blair, A. C. Green, D. Vander-Hyde Oct 2020

Demonstration Of Dynamic Thermal Compensation For Parametric Instability Suppression In Advanced Ligo, T. Hardwick, V. J. Hamedan, C. Blair, A. C. Green, D. Vander-Hyde

Faculty Publications

Advanced LIGO and other ground-based interferometric gravitational-wave detectors use high laser power to minimize shot noise and suspended optics to reduce seismic noise coupling. This can result in an opto-mechanical coupling which can become unstable and saturate the interferometer control systems. The severity of these parametric instabilities scales with circulating laser power and first hindered LIGO operations in 2014. Static thermal tuning and active electrostatic damping have previously been used to control parametric instabilities at lower powers but are insufficient as power is increased. Here we report the first demonstration of dynamic thermal compensation to avoid parametric instability in an …


Quantum Backaction Cancellation In The Audio Band, Jonathan Cripe, Torrey Cullen, Yanbei Chen, Paula Heu, David Follman, Garrett D. Cole, Thomas Corbitt Sep 2020

Quantum Backaction Cancellation In The Audio Band, Jonathan Cripe, Torrey Cullen, Yanbei Chen, Paula Heu, David Follman, Garrett D. Cole, Thomas Corbitt

Faculty Publications

We report on the cancellation of quantum backaction noise in an optomechanical cavity. We perform measurements of the displacement of the microresonator, one in reflection of the cavity and one in transmission of the cavity. We show that measuring the amplitude quadrature of the light transmitted by the optomechanical cavity allows us to cancel the backaction noise between 2 and 50 kHz as a consequence of the strong optical spring present in the detuned cavity. This cancellation yields a more sensitive measurement of the microresonator's position with a 2 dB increase in sensitivity. To confirm that the backaction is eliminated, …


Modeling Anatomic Changes For Adaptive Radiotherapy In Locally Advanced Lung Cancer Patient Population, James Alexander Kavanaugh Aug 2020

Modeling Anatomic Changes For Adaptive Radiotherapy In Locally Advanced Lung Cancer Patient Population, James Alexander Kavanaugh

LSU Doctoral Dissertations

Anatomic changes occurring mid-treatment for patients undergoing radiation therapy for locally advanced lung cancer can degrade the quality of the intended treatment plan. These changes include tumor regression, geometric misalignment, and lung density changes (atelectasis and pleural effusion), and are visible on the daily 3D cone beam CT (CBCT). To maintain the intended treatment quality, adaptive radiotherapy (ART) can be employed to modify the treatment plan to account for these anatomic changes. However, the evaluation on when to adapt is currently completed manually by the treating clinicians, resulting in a subjective and inconsistent application. To address these limitations, a series …


Modifications To Gravitational Wave Equation From Canonical Quantum Gravity, Andrea Dapor, Klaus Liegener Aug 2020

Modifications To Gravitational Wave Equation From Canonical Quantum Gravity, Andrea Dapor, Klaus Liegener

Faculty Publications

It is expected that the quantum nature of spacetime leaves its imprint in all semiclassical gravitational systems, at least in certain regimes, including gravitational waves. In this paper we investigate such imprints on gravitational waves within a specific framework: space is assumed to be discrete (in the form of a regular cubic lattice), and this discrete geometry is quantised following Dirac's canonical quantisation scheme. The semiclassical behavior is then extracted by promoting the expectation value of the Hamiltonian operator on a semiclassical state to an effective Hamiltonian. Considering a family of semiclassical states representing small tensor perturbations to Minkowski background, …