Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Syneresis And Rheology Mechanisms Of A Latex-Heur Associative Thickener System, Travis Bruno Smith Dec 2015

Syneresis And Rheology Mechanisms Of A Latex-Heur Associative Thickener System, Travis Bruno Smith

Master's Theses

Rheology modifiers are used in paints and coatings to ease their application to a surface, prevent sagging once applied, and allow the leveling of brushstrokes, among other benefits. The early rheology modifiers were hydroxyethyl celluloses (HECs), a type of non-associative thickener that is relatively inexpensive and synthesized from cellulose, which is abundant. However, coatings that are modified with HECs tend to suffer from poor leveling and syneresis (phase separation). HECs have since been replaced with associative thickeners (ATs). These thickeners, when properly formulated, produce stable dispersions that have improved rheological properties, yet, unlike HECs, are sensitive to changes to the …


Revision-Polyurethane-Graphene Nanocomposites For Corrosion-Resistant Coatings, Alexandra Rose Stevenson Sep 2015

Revision-Polyurethane-Graphene Nanocomposites For Corrosion-Resistant Coatings, Alexandra Rose Stevenson

Master's Theses

Corrosion is a prevalent concern throughout the world, causing significant monetary and safety concerns. Research has been dedicated to developing cost-effective solutions for corrosion that will also meet increasingly stringent environmental regulations. The recently discovered nanomaterial graphene has been proposed as a potential component in anticorrosion technology due to its strong air and water barrier properties. However, graphene is a relatively expensive, difficult to synthesize material. By incorporating it into nanocomposites, its properties can be exploited even at low concentrations. Previous work has been conducted involving the preparation of anticorrosive polystyrene-graphene nanocomposites; these materials were found to be effective long-term …


Composition Effects On Sheen And Spread Rate Of An Interior Flat, One Coat Latex Paint Formulation, Dana James Christensen Ii Aug 2015

Composition Effects On Sheen And Spread Rate Of An Interior Flat, One Coat Latex Paint Formulation, Dana James Christensen Ii

Master's Theses

Interior flat, white latex paint is a common coating applied to walls around the world. Development of a coating with one coat hide capability is a pinnacle achievement for paint formulators as it has the potential to save consumers both time and money. One coat paints already exist on the market, but they are limited in color, coverage, and often have many disclaimers. Work done was part of a project initiated by ChemoursTM Titanium Technologies.

The goal of the project presented in this article was to create an interior flat, white latex paint that yields a spread rate of greater …


Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin Jun 2015

Effect Of Surfactant Architecture On Conformational Transitions Of Conjugated Polyelectrolytes, Greg A. Braggin

Master's Theses

Water soluble conjugated polyelectrolytes (CPEs), which fall under the category of conductive polymers, possess numerous advantages over other conductive materials for the fabrication of electronic devices. Namely, the processing of water soluble conjugated polyelectrolytes into thin film electronic devices is much less costly as compared to the processing of inorganic materials. Moreover, the handling of conjugated polyelectrolytes can be performed in a much more environmentally friendly manner than in the processing of other conjugated polymers because conjugated polyelectrolytes are water soluble, whereas other polymers will only dissolve in toxic organic solvents. The processing of electronic devices containing inorganic constituents such …