Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Ion Friction At Small Values Of The Coulomb Logarithm, Robert Tucker Sprenkle Jul 2018

Ion Friction At Small Values Of The Coulomb Logarithm, Robert Tucker Sprenkle

Theses and Dissertations

We create a dual-species ultracold neutral plasma (UNP) by photo-ionizing Yb and Ca atoms in a dual-species magneto-optical trap. Unlike single-species UNP expansion, these plasmas are well outside of the collisionless (Vlasov) approximation. We observe the mutual interaction of the Yb and Ca ions by measuring the velocity distribution for each ion species separately. We model the expansion using a fluid code including ion-ion friction and compare with experimental results to obtain a value of the Coulomb logarithm of Λ= 0.04.


Dual Species Calcium And Ytterbium Magneto Optical Trap, Alexander Erickson, Scott Bergeson Jan 2016

Dual Species Calcium And Ytterbium Magneto Optical Trap, Alexander Erickson, Scott Bergeson

Journal of Undergraduate Research

One area of particular interest in modern physics research is creating a viable fusion system for sustainable energy. Fusion occurs when a high energy plasma is manipulated in such a way that small atoms collide together, combining to create larger atoms and releasing tremendous amounts of harvestable energy. However, there are many theoretical, mathematical, and practical roadblocks to creating a stable fusion experiment. One practical limitation and one mathematical limitation are as follows: practically, much of the energy used to create a fusion-grade plasma ends up in the kinetic energy of the electrons and is lost to the experiment; mathematically, …


Ionic Selectivity In L-Type Calcium Channels By Electrostatics And Hard-Core Repulsion, Dezso Boda, Douglas Henderson, Monika Valisko, Bob Eisenberg, Dirk Gillespie Apr 2009

Ionic Selectivity In L-Type Calcium Channels By Electrostatics And Hard-Core Repulsion, Dezso Boda, Douglas Henderson, Monika Valisko, Bob Eisenberg, Dirk Gillespie

Faculty Publications

A physical model of selective "ion binding" in the L-type calcium channel is constructed, and consequences of the model are compared with experimental data. This reduced model treats only ions and the carboxylate oxygens of the EEEE locus explicitly and restricts interactions to hard-core repulsion and ion–ion and ion–dielectric electrostatic forces. The structural atoms provide a flexible environment for passing cations, thus resulting in a self-organized induced-fit model of the selectivity filter. Experimental conditions involving binary mixtures of alkali and/or alkaline earth metal ions are computed using equilibrium Monte Carlo simulations in the grand canonical ensemble. The model pore rejects …


Comment On "Generation Of Cold Low Divergent Atomic Beam Of Indium By Laser Ablation", A. Denning, A. Booth, S. Lee, M. Amonson, Scott D. Bergeson Jan 2009

Comment On "Generation Of Cold Low Divergent Atomic Beam Of Indium By Laser Ablation", A. Denning, A. Booth, S. Lee, M. Amonson, Scott D. Bergeson

Faculty Publications

We present measurements of the velocity distribution of calcium atoms in an atomic beam generated using a dual-stage laser back-ablation apparatus. Distributions are measured using a velocity selective Doppler time-of-flight technique. They are Boltzmann-like with rms velocities corresponding to temperatures above the melting point for calcium. Contrary to a recent report in the literature, this method does not generate a subthermal atomic beam.


The Effect Of Protein Dielectric Coefficient On The Ionic Selectivity Of A Calcium Channel, Douglas Henderson, Dezso Boda, Monika Valisko, Bob Eisenberg, Wolfgang Nonner, Dirk Gillespie Jul 2006

The Effect Of Protein Dielectric Coefficient On The Ionic Selectivity Of A Calcium Channel, Douglas Henderson, Dezso Boda, Monika Valisko, Bob Eisenberg, Wolfgang Nonner, Dirk Gillespie

Faculty Publications

Calcium-selective ion channels are known to have carboxylate-rich selectivity filters, a common motif that is primarily responsible for their high Ca2+ affinity. Different Ca2+ affinities ranging from micromolar (the L-type Ca channel) to millimolar (the ryanodine receptor channel) are closely related to the different physiological functions of these channels. To understand the physical mechanism for this range of affinities given similar amino acids in their selectivity filters, we use grand canonical Monte Carlo simulations to assess the binding of monovalent and divalent ions in the selectivity filter of a model Ca channel. We use a reduced model where the electrolyte …


Fluorescence Measurements Of Expanding Strongly Coupled Neutral Plasmas, E. A. Cummings, J. E. Daily, Dallin S. Durfee, Scott D. Bergeson Nov 2005

Fluorescence Measurements Of Expanding Strongly Coupled Neutral Plasmas, E. A. Cummings, J. E. Daily, Dallin S. Durfee, Scott D. Bergeson

Faculty Publications

We report new detailed density profile measurements in expanding strongly coupled neutral calcium plasmas. Using laser-induced fluorescence techniques, we determine plasma densities in the range of 10^5 to 10^9 cm^-3 with a time resolution limit as small as 7 ns. Strong coupling in the plasma ions is inferred directly from the fluorescence signals. Evidence for strong coupling at late times is presented, confirming a recent theoretical result.


Two-Photon Photoionization Of The Ca 4s3d^1d2 Level In An Optical Dipole Trap, E. A. Cummings, J. E. Daily, Dallin S. Durfee, Scott D. Bergeson, R. Gommers Apr 2005

Two-Photon Photoionization Of The Ca 4s3d^1d2 Level In An Optical Dipole Trap, E. A. Cummings, J. E. Daily, Dallin S. Durfee, Scott D. Bergeson, R. Gommers

Faculty Publications

We report an optical dipole trap for calcium. The trap is created by focusing a 488-nm argon-ion laser beam into a calcium magneto-optical trap. The argon-ion laser photoionizes atoms in the trap because of a near-resonance with the 4s4f 1^F3 level. By measuring the dipole-trap decay rate as a function of argon-ion laser intensity, we determine the 1^F3 photoionization cross section at our wavelength to be approximately 230 Mb.


Two-Photon Ionization Of The Calcium 4s3d 1d2 Level In An Optical Dipole Trap, Jared Estus Daily Mar 2005

Two-Photon Ionization Of The Calcium 4s3d 1d2 Level In An Optical Dipole Trap, Jared Estus Daily

Theses and Dissertations

This thesis reports an optical dipole trap for atomic calcium. The dipole trap is loaded from a magneto-optical trap (MOT) of calcium atoms cooled near the Doppler limit (~1 mK). The dipole trap is formed by a large-frame argon ion laser focused to 20 microns into the center of the MOT. This laser runs single-line at 488 nm with a maximum power of 10.6 watts. These parameters result in a trap of 125 mK for calcium atoms in the 4s3d 1D2 state. The 488 nm light also photo-ionizes the trapped atoms due to a near-resonant transition to the 4s4f 1F3 …


Optical Detection Of Ultracold Neutral Calcium Plasmas, Elizabeth Ann Cummings Feb 2005

Optical Detection Of Ultracold Neutral Calcium Plasmas, Elizabeth Ann Cummings

Theses and Dissertations

We demonstrate an optical method to detect calcium ions in an ultracold plasma. We probe the plasma with a 397 nm laser beam tuned to a calcium ion transition. The probe laser beam is focused to a 160 µm waist allowing fine spatial resolution. Ions are detected by measuring fluorescence using a Photo-Multiplier Tube (PMT). The signal, an average of 4000 acquisitions, has a temporal resolution of 120 ns. We present the details of this method, potential improvements, and prospects of imaging the expanding plasma ions. We also present preliminary work on spatially resolved absorption measurements, as well as additional …