Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Machine learning

Physics

Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 63

Full-Text Articles in Physical Sciences and Mathematics

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu Jan 2022

Deeply Learning Deep Inelastic Scattering Kinematics, Markus Diefenthaler, Abdullah Farhat, Andrii Verbytskyi, Yuesheng Xu

Mathematics & Statistics Faculty Publications

We study the use of deep learning techniques to reconstruct the kinematics of the neutral current deep inelastic scattering (DIS) process in electron–proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, and train deep neural networks to reconstruct the kinematic variables Q2 and x. Our approach is based on the information used in the classical construction methods, the measurements of the scattered lepton, and the hadronic final state in the detector, but is enhanced through correlations and patterns revealed with the simulated data sets. We show that, with the appropriate selection …


Applications Of A Combined Approach Of Kinetic Monte Carlo Simulations And Machine Learning To Model Atomic Layer Deposition (Ald) Of Metal Oxides, Emily Justus Jan 2022

Applications Of A Combined Approach Of Kinetic Monte Carlo Simulations And Machine Learning To Model Atomic Layer Deposition (Ald) Of Metal Oxides, Emily Justus

MSU Graduate Theses

Metal-oxides such as ZnO or Al2O3 synthesized through Atomic Layer Deposition (ALD) have been of great research interest as the candidate materials for ultra-thin tunnel barriers. In this study, I have applied a 3D on-lattice Kinetic Monte Carlo (kMC) code developed by Timo Weckman’s group to simulate the growth mechanisms of the tunnel barrier layer and to evaluate the role of various experimentally relevant factors in the ALD processes. I have systematically studied the effect of parameters such as the chamber pressure temperature, pulse, and purge times. The database generated from the kMC simulations was subsequently used …


Establishing A Machine Learning Framework For Discovering Novel Phononic Crystal Designs, Drew Feltner Jan 2022

Establishing A Machine Learning Framework For Discovering Novel Phononic Crystal Designs, Drew Feltner

Browse all Theses and Dissertations

A phonon is a discrete unit of vibrational motion that occurs in a crystal lattice. Phonons and the frequency at which they propagate play a significant role in the thermal, optical, and electronic properties of a material. A phononic material/device is similar to a photonic material/device, except that it is fabricated to manipulate certain bands of acoustic waves instead of electromagnetic waves. Phononic materials and devices have been studied much less than their photonic analogues and as such current materials exhibit control over a smaller range of frequencies. This study aims to test the viability of machine learning, specifically neural …


Multi-Modality Automatic Lung Tumor Segmentation Method Using Deep Learning And Radiomics, Siqiu Wang Jan 2022

Multi-Modality Automatic Lung Tumor Segmentation Method Using Deep Learning And Radiomics, Siqiu Wang

Theses and Dissertations

Delineation of the tumor volume is the initial and fundamental step in the radiotherapy planning process. The current clinical practice of manual delineation is time-consuming and suffers from observer variability. This work seeks to develop an effective automatic framework to produce clinically usable lung tumor segmentations. First, to facilitate the development and validation of our methodology, an expansive database of planning CTs, diagnostic PETs, and manual tumor segmentations was curated, and an image registration and preprocessing pipeline was established. Then a deep learning neural network was constructed and optimized to utilize dual-modality PET and CT images for lung tumor segmentation. …


Machine Learning-Driven Surrogate Models For Electrolytes, Tong Gao Jan 2022

Machine Learning-Driven Surrogate Models For Electrolytes, Tong Gao

Dissertations, Master's Theses and Master's Reports

We have developed a lattice Monte Carlo (MC) simulation based on the diffusion-limited aggregation model that accounts for the effect of the physical properties of ionic liquids (ILs) on lithium dendrite growth. Our simulations show that the size asymmetry between the cation and anion, the dielectric constant, and the volume fraction of ILs are critical factors to significantly suppress the dendrite growth, primarily due to substantial changes in electric-field screening. Specifically, the volume fraction of ILs has the optimal value for dendrite suppression. The present simulation method indicates potential challenges for the model extension to macroscopic systems. Therefore, we also …


Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski Jan 2022

Artificial Intelligence And Machine Learning In Optical Information Processing: Introduction To The Feature Issue, Khan Iftekharuddin, Chrysanthe Preza, Abdul Ahad S. Awwal, Michael E. Zelinski

Electrical & Computer Engineering Faculty Publications

This special feature issue covers the intersection of topical areas in artificial intelligence (AI)/machine learning (ML) and optics. The papers broadly span the current state-of-the-art advances in areas including image recognition, signal and image processing, machine inspection/vision and automotive as well as areas of traditional optical sensing, interferometry and imaging.


Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili Dec 2021

Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili

Computational and Data Sciences (PhD) Dissertations

Quantum technology has been rapidly growing; in particular, the experiments that have been performed with superconducting qubits and circuit QED have allowed us to explore the light-matter interaction at its most fundamental level. The study of coherent dynamics between two-level systems and resonator modes can provide insight into fundamental aspects of quantum physics, such as how the state of a system evolves while being continuously observed. To study such an evolving quantum system, experimenters need to verify the accuracy of state preparation and control since quantum systems are very fragile and sensitive to environmental disturbance. In this thesis, I look …


Critical Behavior In Evolutionary And Population Dynamics, Stephen Ordway Sep 2021

Critical Behavior In Evolutionary And Population Dynamics, Stephen Ordway

Dissertations

This study is an exploration of phase transition behavior in evolutionary and population dynamics, and techniques for predicting population changes, across the disciplines of physics, biology, and computer science. Under the looming threat of climate change, it is imperative to understand the dynamics of populations under environmental stress and to identify early warning signals of population decline. These issues are explored here in (1) a computational model of evolutionary dynamics, (2) an experimental system of decaying populations under environmental stress, and (3) a machine learning approach to predict population changes based on environmental factors. Through the lens of critical phase …


Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen Aug 2021

Modeling Of Argon Bombardment And Densification Of Low Temperature Organic Precursors Using Reactive Md Simulations And Machine Learning, Kwabena Asante-Boahen

MSU Graduate Theses

In this study, an important aspect of the synthesis process for a-BxC:Hy was systematically modeled by utilizing the Reactive Molecular Dynamics (MD) in modeling the argon bombardment from the orthocarborane molecules as the precursor. The MD simulations are used to assess the dynamics associated with the free radicals that result from the ion bombardment. By applying the Data Mining/Machine Learning analysis into the datasets generated from the large reactive MD simulations, I was able to identify and quality the kinetics of these radicals. Overall, this approach allows for a better understanding of the overall mechanism at the atomistic level of …


Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn Mar 2021

Identifying, Analyzing, And Using Discriminatory Variables For Classification Of Neutrino Signal And Background Noise In Multivariate Analysis In The Askaryan Radio Array Experiment, Jesse Osborn

Honors Theses

The Askaryan Radio Array Experiment, located near the South Pole, works to pinpoint specific instances of neutrinos from outside the solar system interacting with nucleons inside the Antarctic ice, emitting radio waves. I have taken data from the ARA stations which is presumed to be background noise and compared it to simulated data meant to look like a neutrino signal. I developed a suite of variables for discrimination between the two data sets, using a computer algorithm to generate a single output variable which can be used to distinguish noise events from signal events. I maximized this discrimination process for …


Countering Internet Packet Classifiers To Improve User Online Privacy, Sina Fathi-Kazerooni Dec 2020

Countering Internet Packet Classifiers To Improve User Online Privacy, Sina Fathi-Kazerooni

Dissertations

Internet traffic classification or packet classification is the act of classifying packets using the extracted statistical data from the transmitted packets on a computer network. Internet traffic classification is an essential tool for Internet service providers to manage network traffic, provide users with the intended quality of service (QoS), and perform surveillance. QoS measures prioritize a network's traffic type over other traffic based on preset criteria; for instance, it gives higher priority or bandwidth to video traffic over website browsing traffic. Internet packet classification methods are also used for automated intrusion detection. They analyze incoming traffic patterns and identify malicious …


At The Interface Of Algebra And Statistics, Tai-Danae Bradley Jun 2020

At The Interface Of Algebra And Statistics, Tai-Danae Bradley

Dissertations, Theses, and Capstone Projects

This thesis takes inspiration from quantum physics to investigate mathematical structure that lies at the interface of algebra and statistics. The starting point is a passage from classical probability theory to quantum probability theory. The quantum version of a probability distribution is a density operator, the quantum version of marginalizing is an operation called the partial trace, and the quantum version of a marginal probability distribution is a reduced density operator. Every joint probability distribution on a finite set can be modeled as a rank one density operator. By applying the partial trace, we obtain reduced density operators whose diagonals …


A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin May 2020

A Physics-Based Machine Learning Study Of The Behavior Of Interstitial Helium In Single Crystal W–Mo Binary Alloys, Adib J. Samin

Faculty Publications

In this work, the behavior of dilute interstitial helium in W–Mo binary alloys was explored through the application of a first principles-informed neural network (NN) in order to study the early stages of helium-induced damage and inform the design of next generation materials for fusion reactors. The neural network (NN) was trained using a database of 120 density functional theory (DFT) calculations on the alloy. The DFT database of computed solution energies showed a linear dependence on the composition of the first nearest neighbor metallic shell. This NN was then employed in a kinetic Monte Carlo simulation, which took into …


Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi Jan 2020

Sparsity And Weak Supervision In Quantum Machine Learning, Seyran Saeedi

Theses and Dissertations

Quantum computing is an interdisciplinary field at the intersection of computer science, mathematics, and physics that studies information processing tasks on a quantum computer. A quantum computer is a device whose operations are governed by the laws of quantum mechanics. As building quantum computers is nearing the era of commercialization and quantum supremacy, it is essential to think of potential applications that we might benefit from. Among many applications of quantum computation, one of the emerging fields is quantum machine learning. We focus on predictive models for binary classification and variants of Support Vector Machines that we expect to be …


Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin Jan 2020

Special Section Guest Editorial: Machine Learning In Optics, Jonathan Howe, Travis Axtell, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

This guest editorial summarizes the Special Section on Machine Learning in Optics.


Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning At Jefferson Laboratory, Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, Khan Iftekharuddin Jan 2020

Superconducting Radio-Frequency Cavity Fault Classification Using Machine Learning At Jefferson Laboratory, Chris Tennant, Adam Carpenter, Tom Powers, Anna Shabalina Solopova, Lasitha Vidyaratne, Khan Iftekharuddin

Electrical & Computer Engineering Faculty Publications

We report on the development of machine learning models for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a continuous-wave recirculating linac utilizing 418 SRF cavities to accelerate electrons up to 12 GeV through five passes. Of these, 96 cavities (12 cryomodules) are designed with a digital low-level rf system configured such that a cavity fault triggers waveform recordings of 17 rf signals for each of the eight cavities in the cryomodule. Subject matter experts are able to analyze the collected time-series data and identify which of the …


Decomposing The Hamiltonian Of Quantum Circuits Using Machine Learning, Jordan Burns, Yih Sung, Colby Wight Dec 2019

Decomposing The Hamiltonian Of Quantum Circuits Using Machine Learning, Jordan Burns, Yih Sung, Colby Wight

Physics Capstone Projects

Quantum computing is one of the most promising techniques for simulating physical systems that cannot be simulated on classical computers[1]. A significant drawback of this approach is the inherent difficulty in designing circuits that can represent these systems on quantum computers. Every quantum circuit is built out of small components called quantum gates. Each of these gates manipulate the quantum system in a specific way. When used in combination, a finite subset of these gates, the set of universal gates, can be used to construct any possible quantum circuit[2].


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Dissertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure …


Fast And Effective Techniques For Lwir Radiative Transfer Modeling: A Dimension-Reduction Approach, Nicholas M. Westing [*], Brett J. Borghetti, Kevin C. Gross Aug 2019

Fast And Effective Techniques For Lwir Radiative Transfer Modeling: A Dimension-Reduction Approach, Nicholas M. Westing [*], Brett J. Borghetti, Kevin C. Gross

Faculty Publications

The increasing spatial and spectral resolution of hyperspectral imagers yields detailed spectroscopy measurements from both space-based and airborne platforms. These detailed measurements allow for material classification, with many recent advancements from the fields of machine learning and deep learning. In many scenarios, the hyperspectral image must first be corrected or compensated for atmospheric effects. Radiative Transfer (RT) computations can provide look up tables (LUTs) to support these corrections. This research investigates a dimension-reduction approach using machine learning methods to create an effective sensor-specific long-wave infrared (LWIR) RT model.


Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang May 2019

Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang

Physics & Astronomy Faculty Research

A computational methodology based on ab initio evolutionary algorithms and spin-polarized density functional theory was developed to predict two-dimensional magnetic materials. Its application to a model system borophene reveals an unexpected rich magnetism and polymorphism. A metastable borophene with nonzero thickness is an antiferromagnetic semiconductor from first-principles calculations, and can be further tuned into a half-metal by finite electron doping. In this borophene, the buckling and coupling among three atomic layers are not only responsible for magnetism, but also result in an out-of-plane negative Poisson's ratio under uniaxial tension, making it the first elemental material possessing auxetic and magnetic properties …


Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre May 2019

Seeing Eye To Eye: A Machine Learning Approach To Automated Saccade Analysis, Maigh Attre

Honors Scholar Theses

Abnormal ocular motility is a common manifestation of many underlying pathologies particularly those that are neurological. Dynamics of saccades, when the eye rapidly changes its point of fixation, have been characterized for many neurological disorders including concussions, traumatic brain injuries (TBI), and Parkinson’s disease. However, widespread saccade analysis for diagnostic and research purposes requires the recognition of certain eye movement parameters. Key information such as velocity and duration must be determined from data based on a wide set of patients’ characteristics that may range in eye shapes and iris, hair and skin pigmentation [36]. Previous work on saccade analysis has …


Dc-Rts Noise: Observation And Analysis, Benjamin William Hendrickson Jan 2019

Dc-Rts Noise: Observation And Analysis, Benjamin William Hendrickson

Dissertations and Theses

Dark current random telegraph signal (DC-RTS) is a physical phenomenon that effects the performance of solid state image sensors. Identified by meta-stable stochastic switching between two or more dark current levels, DC-RTS is an emerging concern for device scientists and manufacturers as a limiting noise source. Observed and studied in both charge coupled devices (CCDs) and complementary metal-oxide-semiconductor (CMOS) image sensors, the metastable defects inside the device structure that give rise to this switching phenomenon are known to be derived from radiation damage. An examination of the relationship between high energy photon damage and these RTS defects is presented and …


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans …


Global Shipping Container Monitoring Using Machine Learning With Multi-Sensor Hubs And Catadioptric Imaging, Victor Esteban Trujillo Jan 2019

Global Shipping Container Monitoring Using Machine Learning With Multi-Sensor Hubs And Catadioptric Imaging, Victor Esteban Trujillo

Dissertations, Theses, and Masters Projects

We describe a framework for global shipping container monitoring using machine learning with multi-sensor hubs and infrared catadioptric imaging. A wireless mesh radio satellite tag architecture provides connectivity anywhere in the world which is a significant improvement to legacy methods. We discuss the design and testing of a low-cost long-wave infrared catadioptric imaging device and multi-sensor hub combination as an intelligent edge computing system that, when equipped with physics-based machine learning algorithms, can interpret the scene inside a shipping container to make efficient use of expensive communications bandwidth. The histogram of oriented gradients and T-channel (HOG+) feature as introduced for …


Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten Dec 2018

Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten

Physics & Astronomy ETDs

In recent years, quantum information processors (QIPs) have grown from one or two qubits to tens of qubits. As a result, characterizing QIPs – measuring how well they work, and how they fail – has become much more challenging. The obstacles to characterizing today’s QIPs will grow even more difficult as QIPs grow from tens of qubits to hundreds, and enter what has been called the “noisy, intermediate-scale quantum” (NISQ) era. This thesis develops methods based on advanced statistics and machine learning algorithms to address the difficulties of “quantum character- ization, validation, and verification” (QCVV) of NISQ processors. In the …


Beam-Target Helicity Asymmetry E In K0Λ And K0Σ0 Photoproduction On The Neutron, D. H. Ho, R. A. Schumacher, A. D’Angelo, A. Deur, J. Fleming, C. Hanretty, T. Kageya, F. J. Klein, E. Klempt, M. M. Lowry, H. Lu, V. A. Nikonov, P. Peng, A. M. Sandorfi, A. V. Sarantsev, I. I. Strakovsky, N. K. Walford, X. Wei, R. L. Workman, K. P. Adhikari, S. Adhikari, D. Adikaram, Z. Akbar, J. Ball, L. Barion, M. Bashkanov, C. D. Bass, M. Battaglieri, I. Bedlinskiy, A. S. Biselli, Wesley P. Gohn Oct 2018

Beam-Target Helicity Asymmetry E In K0Λ And K0Σ0 Photoproduction On The Neutron, D. H. Ho, R. A. Schumacher, A. D’Angelo, A. Deur, J. Fleming, C. Hanretty, T. Kageya, F. J. Klein, E. Klempt, M. M. Lowry, H. Lu, V. A. Nikonov, P. Peng, A. M. Sandorfi, A. V. Sarantsev, I. I. Strakovsky, N. K. Walford, X. Wei, R. L. Workman, K. P. Adhikari, S. Adhikari, D. Adikaram, Z. Akbar, J. Ball, L. Barion, M. Bashkanov, C. D. Bass, M. Battaglieri, I. Bedlinskiy, A. S. Biselli, Wesley P. Gohn

Physics and Astronomy Faculty Publications

We report the first measurements of the E beam-target helicity asymmetry for the γ nK0Λ and K0Σ0 channels in the energy range 1.70 ≤ W ≤ 2.34 GeV. The CLAS system at Jefferson Lab uses a circularly polarized photon beam and a target consisting of longitudinally polarized solid molecular hydrogen deuteride with low background contamination for the measurements. The multivariate analysis method boosted decision trees is used to isolate the reactions of interest. Comparisons with predictions from the KaonMAID, SAID, and Bonn-Gatchina models are presented. These results will help separate the …


A Machine Learning Algorithm For Identifying And Tracking Bacteria In Three Dimensions Using Digital Holographic Microscopy, Manuel Bedrossian, Marwan El-Kholy, Daniel Neamati, Jay Nadeau Feb 2018

A Machine Learning Algorithm For Identifying And Tracking Bacteria In Three Dimensions Using Digital Holographic Microscopy, Manuel Bedrossian, Marwan El-Kholy, Daniel Neamati, Jay Nadeau

Physics Faculty Publications and Presentations

Digital Holographic Microscopy (DHM) is an emerging technique for three-dimensional imaging of microorganisms due to its high throughput and large depth of field relative to traditional microscopy techniques. While it has shown substantial success for use with eukaryotes, it has proven challenging for bacterial imaging because of low contrast and sources of noise intrinsic to the method (e.g. laser speckle). This paper describes a custom written MATLAB routine using machine-learning algorithms to obtain three-dimensional trajectories of live, lab-grown bacteria as they move within an essentially unrestrained environment with more than 90% precision. A fully annotated version of the software used …


Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett Jan 2018

Motion-Induced Artifact Mitigation And Image Enhancement Strategies For Four-Dimensional Fan-Beam And Cone-Beam Computed Tomography, Matthew J. Riblett

Theses and Dissertations

Four dimensional imaging has become part of the standard of care for diagnosing and treating non-small cell lung cancer. In radiotherapy applications 4D fan-beam computed tomography (4D-CT) and 4D cone-beam computed tomography (4D-CBCT) are two advanced imaging modalities that afford clinical practitioners knowledge of the underlying kinematics and structural dynamics of diseased tissues and provide insight into the effects of regular organ motion and the nature of tissue deformation over time. While these imaging techniques can facilitate the use of more targeted radiotherapies, issues surrounding image quality and accuracy currently limit the utility of these images clinically.

The purpose of …


Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami Jan 2018

Unsupervised Machine Learning Account Of Magnetic Transitions In The Hubbard Model, Kelvin Ch'ng, Nick Vazquez, Ehsan Khatami

Faculty Publications

We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t-distributed stochastic neighboring ensemble (t-SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and …