Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Galaxy evolution

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 79

Full-Text Articles in Physical Sciences and Mathematics

Buzzard To Cardinal: Improved Mock Catalogs For Large Galaxy Surveys, Chun-Hao To, Joseph Derose, Risa H. Wechsler, Eli Rykoff, Hao-Yi Wu, Susmita Adhikari, Elisabeth Krause, Eduardo Rozo, David H. Weinberg Jan 2024

Buzzard To Cardinal: Improved Mock Catalogs For Large Galaxy Surveys, Chun-Hao To, Joseph Derose, Risa H. Wechsler, Eli Rykoff, Hao-Yi Wu, Susmita Adhikari, Elisabeth Krause, Eduardo Rozo, David H. Weinberg

Physics Faculty Publications and Presentations

We present the Cardinal mock galaxy catalogs, a new version of the Buzzard simulation that has been updated to support ongoing and future cosmological surveys, including the Dark Energy Survey (DES), DESI, and LSST. These catalogs are based on a one-quarter sky simulation populated with galaxies out to a redshift of z = 2.35 to a depth of mr = 27. Compared to the Buzzard mocks, the Cardinal mocks include an updated subhalo abundance matching model that considers orphan galaxies and includes mass-dependent scatter between galaxy luminosity and halo properties. This model can simultaneously fit galaxy clustering and group–galaxy …


The Nature Of Lobal Qsos. Ii. Hst/Wfc3 Observations Reveal Host Galaxies Dominated By Mergers, Mariana S. Lazarova, Gabriela Canalizo, Mark Lacy, Wyatt Behn, Kaitlyn Raub, Vardha N. Bennert, Duncan Farrah May 2023

The Nature Of Lobal Qsos. Ii. Hst/Wfc3 Observations Reveal Host Galaxies Dominated By Mergers, Mariana S. Lazarova, Gabriela Canalizo, Mark Lacy, Wyatt Behn, Kaitlyn Raub, Vardha N. Bennert, Duncan Farrah

Physics

Low-ionization broad absorption line QSOs (LoBALs) are suspected to be merging systems in which extreme, active galactic nucleus-driven outflows have been triggered. Whether or not LoBALs are uniquely associated with mergers, however, has yet to be established. To characterize the morphologies of LoBALs, we present the first high-resolution morphological analysis of a volume-limited sample of 22 Sloan Digital Sky Survey (SDSS)-selected LoBALs at 0.5 < z < 0.6 from Hubble Space Telescope Wide Field Camera 3 observations. Host galaxies are resolved in 86% of the systems in F125W, which is sensitive to old stellar populations, while only 18% are detected in F475W, which traces young, unobscured stellar populations. Signs of recent or ongoing tidal interaction are present in 45%–64% of the hosts, including double nuclei, tidal tails, bridges, plumes, shells, and extended debris. Ongoing interaction with a companion is apparent in 27%−41% of the LoBALs, with as much as 1/3 of the sample representing late-stage mergers at projected nuclear separations <10 kpc. Detailed surface brightness modeling indicates that 41% of the hosts are bulge dominated while only 18% are disks. We discuss trends in various properties as a function of merger stage and parametric morphology. Notably, mergers are associated with slower, dustier winds than those seen in undisturbed/unresolved hosts. Our results favor an evolutionary scenario in which quasar-level accretion during various merger stages is associated with the observed outflows in low-z LoBALs. We discuss differences between LoBALs and FeLoBALs and show that selection via the traditional balnicity index would have excluded all but one of the mergers.


Dissecting The Most Extreme Starburst Events In The Universe With Gravitational Lensing, Patrick S. Kamienski Apr 2023

Dissecting The Most Extreme Starburst Events In The Universe With Gravitational Lensing, Patrick S. Kamienski

Doctoral Dissertations

Three billions years after the Big Bang, the rate at which galaxies in the Universe were forming stars was at its peak. Colloquially known as Cosmic Noon, this epoch (redshift z ~ 2) is crucial to our understanding of how galaxies evolve with time. Dusty star-forming galaxies (DSFGs) offer important clues to such fueling and quenching of star formation. With extreme infrared luminosities (1012 − 1014 solar luminosities), their inferred star formation rates are 100−10000 solar masses per year. Yet, the physical mechanisms by which they fuel this short-lived maximal starburst phase remain poorly understood. With this dissertation, …


Galaxy And Mass Assembly (Gama): Low-Redshift Quasars And Inactive Galaxies Have Similar Neighbors, Maria B. Stone, Clare F. Wethers, Roberto De Propris, Jari Kotilainen, Nischal Acharya, Benne W. Holwerda, Jonathan Loveday, Steven Phillipps Apr 2023

Galaxy And Mass Assembly (Gama): Low-Redshift Quasars And Inactive Galaxies Have Similar Neighbors, Maria B. Stone, Clare F. Wethers, Roberto De Propris, Jari Kotilainen, Nischal Acharya, Benne W. Holwerda, Jonathan Loveday, Steven Phillipps

Faculty Scholarship

We explore the properties of galaxies in the proximity (within a ∼2 Mpc radius sphere) of Type I quasars at 0.1 <z <0.35, to check whether and how an active galaxy influences the properties of its neighbors. We further compare these with the properties of neighbors around inactive galaxies of the same mass and redshift within the same volume of space, using the Galaxy and Mass Assembly spectroscopic survey. Our observations reveal no significant difference in properties such as the number of neighbors, morphologies, stellar mass, star formation rates, and star formation history between the neighbors of quasars and those of the comparison sample. This implies that quasar activity in a host galaxy does not significantly affect its neighbors (e.g., via interactions with the jets). Our results suggest that quasar host galaxies do not strongly differ from the average galaxy within the specified mass and redshift range. Additionally, the implication of the relatively minor importance of the environmental effect on and from quasars is that nuclear activity is more likely triggered by internal and secular processes.


Nearby Galaxies: Modelling Star Formation Histories And Contamination By Unresolved Background Galaxies, Hadi Papei Jan 2023

Nearby Galaxies: Modelling Star Formation Histories And Contamination By Unresolved Background Galaxies, Hadi Papei

Electronic Thesis and Dissertation Repository

Galaxies are complex systems of stars, gas, dust, and dark matter which evolve over billions of years, and one of the main goals of astrophysics is to understand how these complex systems form and change. Measuring the star formation history of nearby galaxies, in which thousands of stars can be resolved individually, has provided us with a clear picture of their evolutionary history and the evolution of galaxies in general.

In this work, we have developed the first public Python package, SFHPy, to measure star formation histories of nearby galaxies using their colour-magnitude diagrams. In this algorithm, an observed colour-magnitude …


The Radial Quenching Progression Of Nearby Galaxies, Chenyu Zhao Jan 2023

The Radial Quenching Progression Of Nearby Galaxies, Chenyu Zhao

Theses and Dissertations--Physics and Astronomy

In this dissertation, we explore the spatial distribution of quiescent regions within galaxies using data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory (SDSS-IV MaNGA). Our analysis focuses on a radial range spanning from 0.3 R e to 1.2 R e and involves the development of innovative data selection and processing methods. Through this investigation, we identify two prominent types of transition galaxies: central-star-forming galaxies (C-SF galaxies) and central-quiescent galaxies (C-Q galaxies). Notably, we observe a correlation between galaxy mass and the predominant type of transition, with more massive galaxies tending to be C-Q …


Galaxy And Mass Assembly (Gama): The Weak Environmental Dependence Of Quasar Activity At 0.1 < Z < 0.35, Clare F. Wethers, Nischal Acharya, Roberto De Propris, Jari Kotilainen, Ivan K. Baldry, Sarah Brough, Simon P. Driver, Alister W. Graham, Benne Holwerda, Andrew M. Hopkins, Angel R. López-Sánchez, Jonathan Loveday, Steven Phillipps, Kevin A. Pimbblet, Edward Taylor, Lingyu Wang, Angus H. Wright Apr 2022

Galaxy And Mass Assembly (Gama): The Weak Environmental Dependence Of Quasar Activity At 0.1 < Z < 0.35, Clare F. Wethers, Nischal Acharya, Roberto De Propris, Jari Kotilainen, Ivan K. Baldry, Sarah Brough, Simon P. Driver, Alister W. Graham, Benne Holwerda, Andrew M. Hopkins, Angel R. López-Sánchez, Jonathan Loveday, Steven Phillipps, Kevin A. Pimbblet, Edward Taylor, Lingyu Wang, Angus H. Wright

Faculty Scholarship

Understanding the connection between nuclear activity and galaxy environment remains critical in constraining models of galaxy evolution. By exploiting the extensive cataloged data from the Galaxy and Mass Assembly survey, we identify a representative sample of 205 quasars at 0.1 < z < 0.35 and establish a comparison sample of galaxies, closely matched to the quasar sample in terms of both stellar mass and redshift. On scales <1 Mpc, the galaxy number counts and group membership of quasars appear entirely consistent with those of the matched galaxy sample. Despite this, we find that quasars are ∼1.5 times more likely to be classified as the group center, indicating a potential link between quasar activity and cold gas flows or galaxy interactions associated with rich group environments. On scales of ∼a few Mpc, the clustering strengths of both samples are statistically consistent, and beyond 10 Mpc, we find no evidence that quasars trace large-scale structures any more than the galaxy control sample. Both populations are found to prefer intermediate-density sheets and filaments to either very high-density environments or very low-density environments. This weak dependence of quasar activity on galaxy environment supports a paradigm in which quasars represent a phase in the lifetime of all massive galaxies and in which secular processes and a group-centric location are the dominant triggers of quasars at low redshift.


Deep Radio Observations And The Role Of The Cosmic Web In Galaxy Evolution, Nicholas M. Luber Jan 2022

Deep Radio Observations And The Role Of The Cosmic Web In Galaxy Evolution, Nicholas M. Luber

Graduate Theses, Dissertations, and Problem Reports

A current open question in the evolution of galaxies, is what are the physical mechanisms that cut off galaxies from their primordial gas reservoirs, resulting in the end of their star-formation capabilities? Recent observational programs have shown that the properties of galaxies show dependencies on their placement within the large-scale structure (LSS) of the universe. These observations have motivated recent developments in theoretical work that have shown how a galaxy's interaction with the LSS may impact its connection to primordial gas supply, and ability to continue to accrete gas, the fundamental ingredient in star-formation.

In order to investigate the role …


First Steps In The Small-Scale Structure Formation In The Universe: The Emergence Of Galaxies, Da Bi Jan 2022

First Steps In The Small-Scale Structure Formation In The Universe: The Emergence Of Galaxies, Da Bi

Theses and Dissertations--Physics and Astronomy

Galactic morphology in the contemporary universe results from the convergence of a long list of physical processes, not all of them yet fully understood and quantified. The universe exhibits a hierarchical structure: galaxies grow being immersed in dark matter (DM) halos, which in turn are fed by diffuse and filamentary accretion. I use a suite of very high-resolution zoom-in cosmological simulations of galaxies in order to study the assembly of galaxies at high redshifts, z ≥ 2, to quantify the role of environment and of the parent DM halos in this procss. My models have been chosen to lie within …


Galaxy And Mass Assembly (Gama): The Merging Potential Of Brightest Group Galaxies, K. Banks, S. Brough, Benne Holwerda, A. M. Hopkins, Á. R. López-Sánchez, S. Phillipps, K. A. Pimbblet, A. S. G. Robotham Nov 2021

Galaxy And Mass Assembly (Gama): The Merging Potential Of Brightest Group Galaxies, K. Banks, S. Brough, Benne Holwerda, A. M. Hopkins, Á. R. López-Sánchez, S. Phillipps, K. A. Pimbblet, A. S. G. Robotham

Faculty Scholarship

Using a volume-limited sample of 550 groups from the Galaxy And Mass Assembly Galaxy Group Catalogue spanning the halo mass range , we investigate the merging potential of central Brightest Group Galaxies (BGGs). We use spectroscopically confirmed close-companion galaxies as an indication of the potential stellar mass buildup of low-redshift BGGs, z ≤ 0.2. We identify 17 close-companion galaxies with projected separations rp < 30 kpc, relative velocities Δv ≤ 300 km s−1, and stellar mass ratios MBGG/MCC ≤ 4 relative to the BGG. These close-companion galaxies yield a total pair fraction of 0.03 ± 0.01. Overall, we find that BGGs …


A Local Baseline Of The Black Hole Mass Scaling Relations For Active Galaxies. Iv. Correlations Between MBh And Host Galaxy Σ, Stellar Mass, And Luminosity, Vardha N. Bennert, Tommaso Treu, Xuheng Ding, Isak Stomberg, Simon Birrer, Tomas Snyder, Matthew A. Malkan, Andrew W. Stephens, Matthew W. Auger Oct 2021

A Local Baseline Of The Black Hole Mass Scaling Relations For Active Galaxies. Iv. Correlations Between MBh And Host Galaxy Σ, Stellar Mass, And Luminosity, Vardha N. Bennert, Tommaso Treu, Xuheng Ding, Isak Stomberg, Simon Birrer, Tomas Snyder, Matthew A. Malkan, Andrew W. Stephens, Matthew W. Auger

Physics

The tight correlations between the mass of supermassive black holes (MBH) and their host-galaxy properties have been of great interest to the astrophysical community, but a clear understanding of their origin and fundamental drivers still eludes us. The local relations for active galaxies are interesting in their own right and form the foundation for any evolutionary study over cosmic time. We present Hubble Space Telescope optical imaging of a sample of 66 local active galactic nuclei (AGNs); for 14 objects, we also obtained Gemini near-infrared images. We use state-of-the-art methods to perform surface photometry of the AGN host …


A Significant Excess In Major Merger Rate For Agns With The Highest Eddington Ratios At Z < 0.2, Victor Marian, Knud Jahnke, Irham Andika, Eduardo Bañados, Vardha N. Bennert, Seth Cohen, Bernd Husemann, Melanie Kaasinen, Anton M. Koekemoer, Mira Mechtley, Masafusa Onoue, Jan-Torge Schindler, Malte Schramm, Andreas Schulze, John D. Silverman, Irina Smirnova-Pinchukova, Arjen Van Der Wel, Carolin Villforth, Rogier A. Windhorst Nov 2020

A Significant Excess In Major Merger Rate For Agns With The Highest Eddington Ratios At Z < 0.2, Victor Marian, Knud Jahnke, Irham Andika, Eduardo Bañados, Vardha N. Bennert, Seth Cohen, Bernd Husemann, Melanie Kaasinen, Anton M. Koekemoer, Mira Mechtley, Masafusa Onoue, Jan-Torge Schindler, Malte Schramm, Andreas Schulze, John D. Silverman, Irina Smirnova-Pinchukova, Arjen Van Der Wel, Carolin Villforth, Rogier A. Windhorst

Physics

Observational studies are increasingly finding evidence against major mergers being the dominant mechanism responsible for triggering an active galactic nucleus (AGN). After studying the connection between major mergers and AGNs with the highest Eddington ratios at z = 2, we here expand our analysis to z < 0.2, exploring the same AGN parameter space. Using ESO VLT/FORS2 B-, V-, and color images, we examine the morphologies of 17 galaxies hosting AGNs with Eddington ratios , and 25 mass- and redshift-matched control galaxies. To match the appearance of the two samples, we add synthetic point sources to the inactive comparison galaxies. The combined sample of AGN and inactive galaxies was …


The Mass Relations Between Supermassive Black Holes And Their Host Galaxies At 1 < Z < 2 With Hst-Wfc3, Xuheng Ding, John Silverman, Tommaso Treu, Andreas Schulze, Malte Schramm, Simon Birrer, Daeseong Park, Knud Jahnke, Vardha N. Bennert, Jeyhan S. Kartaltepe, Anton M. Koekemoer, Matthew A. Malkan, David Sanders Jan 2020

The Mass Relations Between Supermassive Black Holes And Their Host Galaxies At 1 < Z < 2 With Hst-Wfc3, Xuheng Ding, John Silverman, Tommaso Treu, Andreas Schulze, Malte Schramm, Simon Birrer, Daeseong Park, Knud Jahnke, Vardha N. Bennert, Jeyhan S. Kartaltepe, Anton M. Koekemoer, Matthew A. Malkan, David Sanders

Physics

Correlations between the mass of a supermassive black hole (SMBH) and the properties of its host galaxy (e.g., total stellar mass M*, luminosity Lhost) suggest an evolutionary connection. A powerful test of a coevolution scenario is to measure the relations –Lhost and –M* at high redshift and compare with local estimates. For this purpose, we acquired Hubble Space Telescope (HST) imaging with WFC3 of 32 X-ray-selected broad-line (type 1) active galactic nuclei at 1.2 < z < 1.7 in deep survey fields. By applying state-of-the-art tools to decompose the HST images including available ACS data, we measured the host galaxy luminosity and stellar mass along with …


The Role Of Angular Momentum In The Interplay Between Disk Galaxies And Their Host Dark Matter Halos: Corollaries For The Hubble Fork Diagram, Angela Collier Jan 2019

The Role Of Angular Momentum In The Interplay Between Disk Galaxies And Their Host Dark Matter Halos: Corollaries For The Hubble Fork Diagram, Angela Collier

Theses and Dissertations--Physics and Astronomy

A majority of disk galaxies host stellar bars that regulate and amplify the flow of angular momentum, J, between disks and their parent dark matter (DM) halos. These bars constitute the prime factor driving internal galaxy evolution. Yet, a non-negligible fraction of disks lack this morphological feature, which led to adoption of the Hubble Fork Diagram. The complex evolution of barred galaxies has been studied by means of numerical simulations, complemented by observations. Despite prolonged efforts, many fundamental questions remain, in part because cosmological simulations still lack the necessary resolution to account for resonant interactions and simulations of isolated …


Detecting Radio Agn Signatures In Red Geysers, Namrata Roy, Kevin Bundy, Wiphu Rujopakarn, Michele Cappellari, Francesco Belfiore, Renbin Yan, Tim Heckman, Matthew Bershady, Jenny Greene, Kyle Westfall, Niv Drory, Kate Rubin, David Law, Kai Zhang, Joseph Gelfand, Dmitry Bizyaev, David Wake, Karen Masters, Daniel Thomas, Cheng Li, Rogemar A. Riffel Dec 2018

Detecting Radio Agn Signatures In Red Geysers, Namrata Roy, Kevin Bundy, Wiphu Rujopakarn, Michele Cappellari, Francesco Belfiore, Renbin Yan, Tim Heckman, Matthew Bershady, Jenny Greene, Kyle Westfall, Niv Drory, Kate Rubin, David Law, Kai Zhang, Joseph Gelfand, Dmitry Bizyaev, David Wake, Karen Masters, Daniel Thomas, Cheng Li, Rogemar A. Riffel

Physics and Astronomy Faculty Publications

A new class of quiescent galaxies harboring possible AGN-driven winds has been discovered using spatially resolved optical spectroscopy from the ongoing SDSS-IV MaNGA survey. These galaxies, termed "red geysers," constitute 5%–10% of the local quiescent population and are characterized by narrow bisymmetric patterns in ionized gas emission features. Cheung et al. argued that these galaxies host large-scale AGN-driven winds that may play a role in suppressing star formation at late times. In this work, we test the hypothesis that AGN activity is ultimately responsible for the red geyser phenomenon. We compare the nuclear radio activity of the red geysers to …


Probing Galaxy Evolution Through Deep Radio Continuum Observations, Hansung Gim Nov 2018

Probing Galaxy Evolution Through Deep Radio Continuum Observations, Hansung Gim

Doctoral Dissertations

One of the most important questions in modern astrophysics is how galaxies form and evolve. There are numerous processes involved in galaxy evolution, but the stellar mass buildup and supermassive black hole growth are two main drivers in galaxy evolution. Those activities are heavily obscured by dust, so we need another tracer without dust attenuation: low-frequency radio continuum observation. We understand the galaxy evolution through the deep radio continuum observations on the Great Observatories Origins Deep Survey (GOODS)-North, -South, and the COSMOS HI Large Extragalactic Survey (CHILES) fields. Exploiting the multi-wavelength dataset, we define the radio populations such as star-formation …


Low Metallicities And Old Ages For Three Ultra-Diffuse Galaxies In The Coma Cluster, Meng Gu, Charlie Conroy, David Law, Pieter Van Dokkum, Renbin Yan, David Wake, Kevin Bundy, Allison Merritt, Roberto Abraham, Jielai Zhang, Matthew Bershady, Dmitry Bizyaev, Jonathan Brinkmann, Niv Drory, Kathleen Grabowski, Karen Masters, Kaike Pan, John Parejko, Anne-Marie Weijmans, Kai Zhang May 2018

Low Metallicities And Old Ages For Three Ultra-Diffuse Galaxies In The Coma Cluster, Meng Gu, Charlie Conroy, David Law, Pieter Van Dokkum, Renbin Yan, David Wake, Kevin Bundy, Allison Merritt, Roberto Abraham, Jielai Zhang, Matthew Bershady, Dmitry Bizyaev, Jonathan Brinkmann, Niv Drory, Kathleen Grabowski, Karen Masters, Kaike Pan, John Parejko, Anne-Marie Weijmans, Kai Zhang

Physics and Astronomy Faculty Publications

A large population of ultra-diffuse galaxies (UDGs) was recently discovered in the Coma cluster. Here we present optical spectra of three such UDGs, DF 7, DF 44, and DF 17, which have central surface brightnesses of μg ≈ 24.4–25.1 mag arcsec−2. The spectra were acquired as part of an ancillary program within the SDSS-IV MaNGA Survey. We stacked 19 fibers in the central regions from larger integral field units (IFUs) per source. With over 13.5 hr of on-source integration, we achieved a mean signal-to-noise ratio in the optical of 9.5 Å−1, 7.9 Å−1, …


Recovering Stellar Population Parameters Via Two Full-Spectrum Fitting Algorithms In The Absence Of Model Uncertainties, Junqiang Ge, Renbin Yan, Michele Cappellari, Shude Mao, Hongyu Li, Youjun Lu May 2018

Recovering Stellar Population Parameters Via Two Full-Spectrum Fitting Algorithms In The Absence Of Model Uncertainties, Junqiang Ge, Renbin Yan, Michele Cappellari, Shude Mao, Hongyu Li, Youjun Lu

Physics and Astronomy Faculty Publications

Using mock spectra based on Vazdekis/MILES library fitted within the wavelength region 3600–7350 Å, we analyse the bias and scatter on the resulting physical parameters induced by the choice of fitting algorithms and observational uncertainties, but avoid effects of those model uncertainties. We consider two full-spectrum fitting codes: PPXF and STARLIGHT, in fitting for stellar population age, metallicity, mass-to-light ratio, and dust extinction. With PPXF, we find that both the bias μ in the population parameters and the scatter σ in the recovered logarithmic values follows the expected trend μσ ∝ 1/(S/N)⁠. The bias increases for younger ages …


Sdss-Iv Manga: Star Formation Cessation In Low-Redshift Galaxies. I. Dependence On Stellar Mass And Structural Properties, Enci Wang, Cheng Li, Ting Xiao, Lin Lin, Matthew Bershady, David R. Law, Michael Merrifield, Sebastian F. Sanchez, Rogemar A. Riffel, Rogerio Riffel, Renbin Yan Apr 2018

Sdss-Iv Manga: Star Formation Cessation In Low-Redshift Galaxies. I. Dependence On Stellar Mass And Structural Properties, Enci Wang, Cheng Li, Ting Xiao, Lin Lin, Matthew Bershady, David R. Law, Michael Merrifield, Sebastian F. Sanchez, Rogemar A. Riffel, Rogerio Riffel, Renbin Yan

Physics and Astronomy Faculty Publications

We investigate radial gradients in the recent star formation history (SFH) of 1917 galaxies with 0.01 < z < 0.14 from the Mapping Nearby Galaxies at Apache Point Observatory project. For each galaxy, we obtain two-dimensional maps and radial profiles for three spectroscopically measured parameters that are sensitive to the recent SFH: Dn (4000) (the 4000 Å break), EW(HδA), and EW(Hα) (the equivalent width of the Hδ absorption and the Hα emission line). The majority of the spaxels are consistent with models of a continuously declining star formation rate, indicating that starbursts occur rarely in local galaxies with regular morphologies. We classify the galaxies into three classes: fully star-forming (SF), partly quenched (PQ), and totally quenched (TQ). The galaxies that are less massive than 1010 M⊙ …


Sdss-Iv Manga: The Spatially Resolved Stellar Initial Mass Function In ~400 Early-Type Galaxies, Taniya Parikh, Daniel Thomas, Claudia Maraston, Kyle B. Westfall, Daniel Goddard, Jianhui Lian, Sofia Meneses-Goytia, Amy Jones, Sam Vaughan, Brett H. Andrews, Matthew Bershady, Dmitry Bizyaev, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Niv Drory, Eric Emsellem, David R. Law, Jeffrey A. Newman, Alexandre Roman-Lopes, David Wake, Renbin Yan, Zheng Zheng Mar 2018

Sdss-Iv Manga: The Spatially Resolved Stellar Initial Mass Function In ~400 Early-Type Galaxies, Taniya Parikh, Daniel Thomas, Claudia Maraston, Kyle B. Westfall, Daniel Goddard, Jianhui Lian, Sofia Meneses-Goytia, Amy Jones, Sam Vaughan, Brett H. Andrews, Matthew Bershady, Dmitry Bizyaev, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Niv Drory, Eric Emsellem, David R. Law, Jeffrey A. Newman, Alexandre Roman-Lopes, David Wake, Renbin Yan, Zheng Zheng

Physics and Astronomy Faculty Publications

Mapping Nearby Galaxies at Apache Point Observatory provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage, and sample size. We derive radial gradients in age, element abundances, and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses 9.9–10.8 log M/M. We find flat gradients in age and [α/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients …


Sdss Iv Manga – Ssfr Profiles And The Slow Quenching Of Discs In Green Valley Galaxies, Francesco Belfiore, Roberto Maiolino, Kevin Bundy, Karen Masters, Matthew Bershady, Grecco A. Oyarzún, Lihwai Lin, Mariana Cano-Diaz, David Wake, Ashley Spindler, Daniel Thomas, Joel R. Brownstein, Niv Drory, Renbin Yan Mar 2018

Sdss Iv Manga – Ssfr Profiles And The Slow Quenching Of Discs In Green Valley Galaxies, Francesco Belfiore, Roberto Maiolino, Kevin Bundy, Karen Masters, Matthew Bershady, Grecco A. Oyarzún, Lihwai Lin, Mariana Cano-Diaz, David Wake, Ashley Spindler, Daniel Thomas, Joel R. Brownstein, Niv Drory, Renbin Yan

Physics and Astronomy Faculty Publications

We study radial profiles in H α equivalent width and specific star formation rate (sSFR) derived from spatially resolved SDSS-IV MaNGA spectroscopy to gain insight on the physical mechanisms that suppress star formation and determine a galaxy’s location in the SFR-M diagram. Even within the star-forming ‘main sequence’, the measured sSFR decreases with stellar mass, in both an integrated and spatially resolved sense. Flat sSFR radial profiles are observed for log(M/M) < 10.5, while star-forming galaxies of higher mass show a significant decrease in sSFR in the central regions, a likely consequence of both larger bulges and an inside-out growth history. Our primary focus is the green valley, constituted by galaxies lying below the star formation main sequence, but not fully passive. In the green valley we find sSFR profiles that are suppressed with respect to star-forming galaxies of the same mass at all galactocentric distances out to 2 effective radii. The responsible quenching mechanism therefore appears to affect the entire galaxy, not simply an …


Sdss-Iv Manga: Stellar Angular Momentum Of About 2300 Galaxies: Unveiling The Bimodality Of Massive Galaxy Properties, Mark T. Graham, Michele Cappellari, Hongyu Li, Shude Mao, Matthew A. Bershady, Dmitry Bizyaev, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Niv Drory, David R. Law, Kaike Pan, Daniel Thomas, David A. Wake, Anne-Marie Weijmans, Kyle Westfall, Renbin Yan Mar 2018

Sdss-Iv Manga: Stellar Angular Momentum Of About 2300 Galaxies: Unveiling The Bimodality Of Massive Galaxy Properties, Mark T. Graham, Michele Cappellari, Hongyu Li, Shude Mao, Matthew A. Bershady, Dmitry Bizyaev, Jonathan Brinkmann, Joel R. Brownstein, Kevin Bundy, Niv Drory, David R. Law, Kaike Pan, Daniel Thomas, David A. Wake, Anne-Marie Weijmans, Kyle Westfall, Renbin Yan

Physics and Astronomy Faculty Publications

We measure λRe⁠, a proxy for galaxy specific stellar angular momentum within one effective radius, and the ellipticity, ϵ, for about 2300 galaxies of all morphological types observed with integral field spectroscopy as part of the Mapping Nearby Galaxies at Apache Point Observatory survey, the largest such sample to date. We use the (λRe, ϵ) diagram to separate early-type galaxies into fast and slow rotators. We also visually classify each galaxy according to its optical morphology and two-dimensional stellar velocity field. Comparing these classifications to quantitative λRe measurements reveals tight …


Sdss-Iv Manga: Modelling The Metallicity Gradients Of Gas And Stars – Radially Dependent Metal Outflow Versus Imf, Jianhui Lian, Daniel Thomas, Claudia Maraston, Daniel Goddard, Taniya Parikh, J. G. Fernández-Trincado, Alexandre Roman-Lopes, Yu Rong, Baitian Tang, Renbin Yan Feb 2018

Sdss-Iv Manga: Modelling The Metallicity Gradients Of Gas And Stars – Radially Dependent Metal Outflow Versus Imf, Jianhui Lian, Daniel Thomas, Claudia Maraston, Daniel Goddard, Taniya Parikh, J. G. Fernández-Trincado, Alexandre Roman-Lopes, Yu Rong, Baitian Tang, Renbin Yan

Physics and Astronomy Faculty Publications

In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass–metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show …


What Makes The Family Of Barred Disc Galaxies So Rich: Damping Stellar Bars In Spinning Haloes, Angela Collier, Isaac Shlosman, Clayton Heller Feb 2018

What Makes The Family Of Barred Disc Galaxies So Rich: Damping Stellar Bars In Spinning Haloes, Angela Collier, Isaac Shlosman, Clayton Heller

Physics and Astronomy Faculty Publications

We model and analyse the secular evolution of stellar bars in spinning dark matter (DM) haloes with the cosmological spin λ ∼ 0–0.09. Using high-resolution stellar and DM numerical simulations, we focus on angular momentum exchange between stellar discs and DM haloes of various axisymmetric shapes – spherical, oblate, and prolate. We find that stellar bars experience a diverse evolution that is guided by the ability of parent haloes to absorb angular momentum, J, lost by the disc through the action of gravitational torques, resonant and non-resonant. We confirm that dynamical bar instability is accelerated via resonant J-transfer …


The [Cii] 158ΜM Line Emission In High-Redshift Galaxies, Guilaine Lagache, Morgane Cousin, Marios Chatzikos Jan 2018

The [Cii] 158ΜM Line Emission In High-Redshift Galaxies, Guilaine Lagache, Morgane Cousin, Marios Chatzikos

Physics and Astronomy Faculty Publications

Gas is a crucial component of galaxies, providing the fuel to form stars, and it is impossible to understand the evolution of galaxies without knowing their gas properties. The [CII] fine structure transition at 158 μm is the dominant cooling line of cool interstellar gas, and is the brightest of emission lines from star forming galaxies from FIR through metre wavelengths, almost unaffected by attenuation. With the advent of ALMA and NOEMA, capable of detecting [CII]-line emission in high-redshift galaxies, there has been a growing interest in using the [CII] line as a probe of the physical conditions of …


Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling Dec 2017

Energy From Active Galactic Nuclei And The Effects On Host Spiral Galaxies, Amanda Schilling

Graduate Theses and Dissertations

I have investigated the energy output of active galactic nuclei (AGN) in order to understand how these objects evolve and the impact they may have on host galaxies. First, I looked at a sample of 96 AGN at redshifts $z \sim 2, 3,$ and $4$ which have imaging and thus luminosity measurements in the $griz$ and $JHK$ observed wavebands. For these galaxies, I have co-epochal data across those bands which accounted for variability in AGN luminosity. I used the luminosity measurements in the five bands to construct spectral energy distributions (SED) in the emitted optical-UV bands for each AGN. I …


Evolution Of Galactic Outflows At Z ~ 0–2 Revealed With Sdss, Deep2, And Keck Spectra, Yuma Sugahara, Masami Ouchi, Lihwai Lin, Crystal L. Martin, Yoshiaki Ono, Yuichi Harikane, Takatoshi Shibuya, Renbin Yan Nov 2017

Evolution Of Galactic Outflows At Z ~ 0–2 Revealed With Sdss, Deep2, And Keck Spectra, Yuma Sugahara, Masami Ouchi, Lihwai Lin, Crystal L. Martin, Yoshiaki Ono, Yuichi Harikane, Takatoshi Shibuya, Renbin Yan

Physics and Astronomy Faculty Publications

We conduct a systematic study of galactic outflows in star-forming galaxies at z ~ 0–2 based on the absorption lines of optical spectra taken from SDSS DR7, DEEP2 DR4, and Keck (Erb et al.). We carefully make stacked spectra of homogeneous galaxy samples with similar stellar mass distributions at z ~ 0–2 and perform the multicomponent fitting of model absorption lines and stellar continua to the stacked spectra. We obtain the maximum (vmax) and central (vout) outflow velocities and estimate the mass loading factors (η), a ratio of the mass outflow rate …


Environmentally Driven Galaxy Evolution And Quenching: Insights From The Low-Redshift Circumgalactic Medium, Joseph Burchett Nov 2017

Environmentally Driven Galaxy Evolution And Quenching: Insights From The Low-Redshift Circumgalactic Medium, Joseph Burchett

Doctoral Dissertations

The gaseous halos of galaxies -- the circumgalactic medium (CGM) -- serve as interfaces playing host to the fueling and feedback processes that sustain and regulate star formation. Furthermore, interactions between galaxies one with another and with larger scale structure, such as galaxy cluster halos, must necessarily act through the CGM. This dissertation examines the CGM as traced by H I, C IV, and O VI absorption lines across wide range of halo environments, from isolated dwarf galaxies with M* < 108 Msun to galaxy clusters with Mhalo > 1014 Msun. By first conducting a blind …


Ultraviolet To Infrared Star Formation Rate Tracers: Characterizing Dust Attenuation And Emission, Andrew Battisti Nov 2017

Ultraviolet To Infrared Star Formation Rate Tracers: Characterizing Dust Attenuation And Emission, Andrew Battisti

Doctoral Dissertations

Star formation rates (SFRs) are among the fundamental properties used to characterize galaxies during their evolution across cosmic times. In the first part of this dissertation, we calibrate continuous, monochromatic SFR indicators over the mid-infrared wavelength range of 6-70 micron. We use a sample of 58 local star-forming galaxies for which there is a rich suite of multi-wavelength photometry and spectroscopy from the ultraviolet through far-infrared. Our results indicate that our mid-infrared SFR indicators are applicable to galaxies over a large range of distances, proving their robustness. We have made the calibrations and diagnostics publicly available to achieve the broadest …


Inside-Out Growth Or Inside-Out Quenching? Clues From Colour Gradients Of Local Galaxies, Jianhui Lian, Renbin Yan, Michael Blanton, Xu Kong Aug 2017

Inside-Out Growth Or Inside-Out Quenching? Clues From Colour Gradients Of Local Galaxies, Jianhui Lian, Renbin Yan, Michael Blanton, Xu Kong

Physics and Astronomy Faculty Publications

We constrain the spatial gradient of star formation history (SFH) within galaxies using the colour gradients in NUV − u (where NUV stands for near-ultraviolet) and ui for a local spatially resolved galaxy sample. By splitting each galaxy into an inner and an outer part, we find that most galaxies show negative gradients in these two colours. We first rule out dust extinction gradient and metallicity gradient as the dominant source for the colour gradient. Then using stellar population models, we explore variations in SFH to explain the colour gradients. As shown by our earlier work, a two-phase …